Three-dimensional (3-D) topological insulators (TIs) are characterized by the presence of metallic surface states and a bulk band gap. Recently, theoretical and experimental studies have shown an induced gap in the surface state bands of TI thin films. The gap results from interaction of conduction band and valence band surface states from the opposite surfaces of a thin film, and its size is determined by the film thickness. This gap formation could open the possibility of thin-film TI-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Here we explore the performance of MOSFETs based on TI thin films, specifically Bi2Se3, using quantum ballistic transport simulations with the tight-binding Hamiltonian in the atomic orbital basis. Our simulations indicate that Bi2Se3 MOSFET will be vulnerable to short-channel effects due to the high relative dielectric constant of Bi2Se3 (∼100) despite its expected excellent electrostatic integrity inherent in a two-dimensional system, and will have other limitations as compared to silicon–based MOSFETs. However, Bi2Se3 MOSFETs, and presumably other TI-based MOSFETs, appear to provide reasonable performance that perhaps could provide novel device opportunities when combined with novel TI properties such as spin-polarized surface states.

1.
M. Z.
Hasan
and
C. L.
Kane
,
Rev. Mod. Phys.
82
,
3045
3067
(
2010
).
2.
J. E.
Moore
,
Nature
464
,
194
198
(
2011
).
3.
J. E.
Moore
,
Nat. Phys.
5
,
378
380
(
2009
).
4.
Q.
Liu
,
C. X.
Liu
,
C.
Xu
,
X. L.
Qi
, and
S. C.
Zhang
,
Phys. Rev. Lett.
102
,
156603
(
2009
).
5.
L. A.
Wray
,
S. Y.
Xu
,
Y.
Xia
,
D.
Hsieh
,
A. V.
Fedorov
,
Y. S.
Hor
,
R. J.
Cava
,
A.
Bansil
,
H.
Lin
, and
M. Z.
Hasan
,
Nat. Phys.
7
,
32
37
(
2011
).
6.
Y. L.
Chen
,
J. H.
Chu
,
J. G.
Analytis
,
Z. K.
Liu
,
K.
Igarashi
,
H. H.
Kuo
,
X. L.
Qi
,
S. K.
Mo
,
R. G.
Moore
,
D. H.
Lu
,
M.
Hashimoto
,
T.
Sasagawa
,
S. C.
Zhang
,
I. R.
Fisher
,
Z.
Hussain
, and
Z. X.
Shen
,
Science
329
(
5992
),
659
662
(
2010
).
7.
H. Z.
Lu
,
W. Y.
Shan
,
W.
Yao
,
Q.
Niu
, and
S. Q.
Shen
,
Phys. Rev. B
81
,
115407
(
2010
).
8.
K.
Park
,
J. J.
Heremans
,
V. W.
Scarola
, and
D.
Minic
,
Phys. Rev. Lett.
105
,
186801
(
2010
).
9.
J.
Chang
,
L. F.
Register
,
S. K.
Banerjee
, and
B.
Sahu
,
Phys. Rev. B
83
,
235108
(
2011
).
10.
Y.
Zhang
,
K.
He
,
C. Z.
Chang
,
C. L.
Song
,
L. L.
Wang
,
X.
Chen
,
J. F.
Jia
,
Z.
Fang
,
X.
Dai
,
W. Y.
Shan
,
S. Q.
Shen
,
Q.
Niu
,
X. L.
Qi
,
C. H.
Zhang
,
X. C.
Ma
, and
Q. K.
Xue
,
Nat. Phys.
6
,
584
588
(
2010
).
11.
Y. Y.
Li
,
G.
Wang
,
X. G.
Zhu
,
M. H.
Liu
,
C.
Ye
,
X.
Chen
,
Y. Y.
Wang
,
K.
He
,
L. L.
Wang
,
X. C.
Ma
,
H. J.
Zhang
,
X.
Dai
,
Z.
Fang
,
X. C.
Xie
,
Y.
Liu
,
X. L.
Qi
,
J. F.
Jia
,
S. C.
Zhang
, and
Q. K.
Xue
,
Adv. Mater.
22
,
4002
4007
(
2010
).
12.
H.
Steinberg
,
D. R.
Gardner
,
Y. S.
Lee
, and
P.
Jarillo-Herrero
,
Nano Lett.
10
,
5032
5036
(
2010
).
13.
S.
Cho
,
N. P.
Butch
,
J.
Paglione
, and
M. S.
Fuhrer
,
Nano Lett.
11
,
1925
1927
(
2011
).
14.
Y.
Wang
,
F.
Xiu
,
L.
Cheng
,
L.
He
,
M.
Lang
,
J.
Tang
,
X.
Kou
,
X.
Yu
,
X.
Jiang
,
Z.
Chen
,
J.
Zou
, and
K. L.
Wang
,
Nano Lett.
12
,
1170
1175
(
2012
).
15.
L.
He
,
F.
Xiu
,
X.
Yu
,
M.
Teague
,
W.
Jiang
,
Y.
Fan
,
X.
Kou
,
M.
Lang
,
Y.
Wang
,
G.
Huang
,
N. C.
Yeh
, and
K. L.
Wang
,
Nano Lett.
12
,
1486
1490
(
2012
).
16.
P.
Wei
,
Z.
Wang
,
X.
Liu
,
V.
Aji
, and
J.
Shi
,
Phys. Rev. B
85
,
201402
R
(
2012
).
17.
D.
Kong
,
Y.
Chen
,
J. J.
Cha
,
Q.
Zhang
,
J. G.
Analytis
,
K.
Lai
,
Z.
Liu
,
S. S.
Hong
,
K. J.
Koski
,
S. K.
Mo
,
Z.
Hussain
,
I. R.
Fisher
,
Z. X.
Shen
, and
Y.
Cui
,
Nat. Nanotechnol.
6
,
705
709
(
2011
).
18.
D.
Culcer
,
E. H.
Hwang
,
T. D.
Stanescu
, and
S. D.
Sarma
,
Phys. Rev. B
82
,
155457
(
2010
).
19.
O. V.
Yazyev
,
J. E.
Moore
, and
S. G.
Louie
,
Phys. Rev. Lett.
105
,
266806
(
2010
).
20.
A. A.
Burkov
and
D. G.
Hawthorn
,
Phys. Rev. Lett.
105
,
066802
(
2010
).
21.
T.
Ozaki
and
H.
Kino
,
Phys. Rev. B
72
,
045121
(
2005
).
22.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
23.
H.
Weng
,
T.
Ozaki
, and
K.
Terakura
,
Phys. Rev. B
79
,
235118
(
2009
).
24.
H.
Kohler
and
C. R.
Becker
,
Phys. Status Solidi B
61
,
533
537
(
1974
).
25.
T.
Usuki
,
M.
Saito
,
M.
Takatsu
,
C. R.
Kiehl
, and
N.
Yokoyama
,
Phys. Rev. B
52
,
8244
8255
(
1995
).
26.
S.
Giraud
,
A.
Kundu
, and
R.
Egger
,
Phys. Rev. B
85
,
035441
(
2012
).
27.
D.
Kim
,
Q.
Li
,
P.
Syers
,
N. P.
Butch
,
J.
Paglione
,
S.
Das Sarma
, and
M. S.
Fuhrer
,
Phys. Rev. Lett.
109
,
166801
(
2012
).
28.
N.
Kharche
,
M.
Luisier
,
G. A.
Howlett
,
G.
Klimeck
, and
M. S.
Jelodar
, “OMEN_FET,” (2011), http://nanohub.org/resources/omenhfet.
29.
N.
Rodriguez
,
F.
Andrieu
,
C.
Navarro
,
O.
Faynot
,
F.
Gamiz
, and
S.
Cristoloveanu
, in IEEE International SOI Conference, Tempe, AZ, October
2011
.
30.
M.
Franz
and
I.
Garate
,
Phys. Rev. B
84
,
045403
(
2011
).
31.
The effective mass (∼0.7) and band gap (∼300 meV) of TlBiSe2 thin film (∼1 nm) are not reported yet. These are confirmed by our density functional calculation.
You do not currently have access to this content.