An inductively coupled plasma technique (ICP), namely, remote-plasma treatment was introduced to ionize the water molecules as the precursor for the deposition of ZnO film via the atomic layer deposition processes. Compared with the H2O gas as the precursor for the ALD growth, the ionized water molecules can provide a lesser energy to uniformly stabilize oxidization processes, resulting in a better film quality with a higher resistivity owing to less formation of intrinsic defects at a lower growth temperature. The relationship between resistivity and formation mechanisms have been discussed and investigated through analyses of atomic force microscopy, photonluminescence, and absorption spectra, respectively. Findings indicate that the steric hindrance of the ligands plays an important rule for the ALD-ZnO film sample with the ICP treatment while the limited number of bonding sites will be dominant for the ALD-ZnO film without the ICP treatment owing to decreasing of the reactive sites via the ligand-exchange reaction during the dissociation process. Finally, the enhanced aspect-ratio into the anodic aluminum oxide with the better improved uniform coating of ZnO layer after the ICP treatment was demonstrated, providing an important information for a promising application in electronics based on ZnO ALD films.

1.
R. L.
Hoffman
,
B. J.
Norris
, and
J. F.
Wager
,
Appl. Phys. Lett.
82
,
733
(
2003
).
2.
S. K.
Hazra
and
S.
Basu
,
Solid State Electron.
49
,
1158
(
2005
).
3.
S.
Major
and
K. L.
Chopra
,
Sol. Energy Mater.
17
,
319
(
1988
).
4.
S. J.
Pearton
,
D. P.
Norton
,
K.
Ip
, and
Y. W.
Keo
,
J. Vac. Sci. Technol. B
22
,
932
(
2004
).
5.
W. Y.
Chang
,
Y. C.
Lai
,
T. B.
Wu
,
S. F.
Wang
,
F.
Chen
, and
M. J.
Tsai
,
Appl. Phys. Lett.
92
,
022110
(
2008
).
6.
C.
Platzer-Björkman
,
J.
Lu
,
J.
Kessler
, and
L.
Stolt
,
Thin Solid Films
431–432
,
321
(
2003
).
7.
E. B.
Yousfi
,
B.
Weinberger
,
F.
Donsanti
,
R.
Cowache
, and
D.
Lincot
,
Thin Solid Films
387
,
29
(
2001
).
8.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Doğan
,
V.
Avrutin
,
S.-J.
Cho
, and
H.
Morkoc
,
J. Appl. Phys.
98
,
041301
(
2005
).
9.
J. H.
Choi
,
Y.
Mao
, and
J. P.
Chang
,
Mater. Sci. Eng. R
72
,
97
(
2011
).
10.
N.
Nepal
,
N. Y.
Garces
,
D. J.
Meyer
,
J. K.
Hite
,
M. A.
Mastro
, and
C. R.
Eddy
,
Appl. Phys. Express
4
,
055802
(
2011
).
11.
M. H.
Lin
,
C. H.
Hou
,
J. Y.
Wu
, and
T. B.
Wu
,
J. Electrochem. Soc.
158
,
H221
(
2011
).
12.
C. C.
Lien
,
C. Y.
Wu
,
Z. Q.
Li
, and
J. J.
Lin
,
J. Appl. Phys.
110
,
063706
(
2011
).
13.
H.
Endo
,
T.
Chiba
,
K.
Meguro
,
K.
Takahashi
,
K.
Fujisawa
,
S.
Sugimura
,
S.
Narita
,
Y.
Kashiwaba
, and
E.
Sato
,
Nucl. Instrum. Methods Phys. Res. A
665
,
15
(
2011
).
14.
M.
Girtan
,
M.
Kompitsas
,
R.
Mallet
, and
I.
Fasaki
,
Eur. Phys. J.: Appl. Phys.
51
,
33212
(
2010
).
15.
L. I.
Burova
,
N. S.
Perov
,
A. S.
Semisalova
,
V. A.
Kulbachinskii
,
V. G.
Kytin
,
V. V.
Roddatis
,
A. L.
Vasiliev
, and
A. R.
Kaul
,
Thin Solid Films
520
,
4580
(
2012
).
16.
S.
O'Brien
,
M.
Çopuroglu
,
P.
Tassie
,
M. G.
Nolan
,
J. A.
Hamilton
,
I.
Povey
,
L.
Pereira
,
R.
Martins
,
E.
Fortunato
, and
M. E.
Pemble
,
Thin Solid Films
520
,
1174
(
2011
).
17.
Zinc Oxide Bulk, Thin Films and Nanostructures
, edited by
C.
Jagadish
and
S. J.
Pearton
(
Elsevier's Science & Technology Rights
,
Netherlands
,
2006
).
18.
N.
Huby
,
S.
Ferrari
,
E.
Guziewicz
,
M.
Godlewski
, and
V.
Osinniy
,
Appl. Phys. Lett.
92
,
023502
(
2008
).
19.
D. H.
Levy
and
S. F.
Nelson
,
J. Vac. Sci. Technol. A
30
,
018501
(
2012
).
20.
S. J.
Lim
,
S.
Kwon
, and
H.
Kim
,
Thin Solid Films
516
,
1523
(
2008
).
21.
H.
Makino
,
A.
Miyake
,
T.
Yamada
,
N.
Yamamoto
, and
T.
Yamamoto
,
Thin Solid Films
517
,
3138
(
2009
).
22.
S.
Lee
,
S.
Bang
,
J.
Park
,
S.
Park
,
W.
Jeong
, and
H.
Jeon
,
Phys. Status Solidi A
207
,
1845
(
2010
).
23.
M.
Godlewski
,
E.
Guziewicz
,
G.
Luka
,
T.
Krajewski
,
M.
Lukasiewicz
,
L.
Wachnicki
,
A.
Wachnicka
,
K.
Kopalko
,
A.
Sarem
, and
B.
Dalati
,
Thin Solid Films
518
,
1145
(
2009
).
24.
S. H. K.
Park
,
C. S.
Hwang
,
H. Y.
Jeong
,
H. Y.
Chu
, and
K. I.
Cho
,
Electrochem. Solid-State Lett.
11
,
H10
(
2008
).
25.
D. A.
Mourey
,
D. A. L.
Zhao
,
J.
Sun
, and
T. N.
Jackson
,
IEEE Trans. Electron Devices
57
,
530
(
2010
).
26.
R. L.
Puurunen
,
Chem. Vap. Deposition
9
,
249
(
2003
).
27.
E.
Guziewicz
,
I. A.
Kowalik
,
M.
Godlewski
,
K.
Kopalko
,
V.
Osinniy
,
A.
Wójcik
,
S.
Yatsunenko
,
E.
Łusakowska
,
W.
Paszkowicz
, and
M.
Guziewicz
,
J. Appl. Phys.
103
,
033515
(
2008
).
28.
S. M.
George
,
Chem. Rev.
110
,
111
(
2010
).
29.
D. H.
Zhang
and
H. L.
Ma
,
Appl. Phys. A
62
,
487
(
1996
).
30.
S.
Bandyopadhyay
,
G. K.
Paul
,
R.
Roya
,
S. K.
Sen
, and
S.
Sen
,
Mater. Chem. Phys.
74
,
83
(
2002
).
31.
J.
He
,
J.
Liu
,
J.
Hu
,
R.
Zeng
, and
W.
Long
,
J. Eur. Ceram. Soc.
31
,
1451
(
2011
).
32.
F.
Oba
,
S. R.
Nishitani
,
S.
Isotani
,
H.
Adachi
, and
I.
Tanaka
,
J. Appl. Phys.
90
,
824
(
2001
).
33.
J. H.
Lee
,
K. H.
Ko
, and
B. O.
Park
,
J. Cryst. Growth
247
,
119
(
2003
).
34.
E.
Fortunato
,
P.
Barquinha
,
A.
Pimentel
,
A.
Gonçalves
,
A.
Marques
,
L.
Pereira
, and
R.
Martins
,
Thin Solid Films
487
,
205
(
2005
).
35.
A. L.
Fahrenbruch
and
R. H.
Bube
,
Fundamentals of Solar Cells
(
Academic
,
New York
,
1993
).
36.
L. E.
Greene
,
M.
Law
,
J.
Goldberger
,
F.
Kim
,
J. C.
Johnson
,
Y.
Zhang
,
R. J.
Saykally
, and
P.
Yang
,
Angew. Chem., Int. Ed.
42
,
3031
(
2003
).
37.
A. B.
Djurišić
,
Y. H.
Leung
,
K. H.
Tam
,
L.
Ding
,
W. K.
Ge
,
H. Y.
Chen
, and
S.
Gwo
,
Appl. Phys. Lett.
88
,
103107
(
2006
).
38.
A. B.
Djurišić
and
Y. H.
Leung
,
Small
2
,
944
(
2006
).
39.
S. M.
Smith
and
H. B.
Schlegel
,
Chem. Mater.
15
,
162
(
2003
).
40.
A. C.
Dillon
,
A. W.
Ott
,
J. D.
Way
, and
S. M.
George
,
Surf. Sci.
322
,
230
(
1995
).
41.
R. L.
Puurunen
,
Chem. Vap. Deposition
10
,
159
(
2004
).
42.
M.
Putkonen
,
J.
Niinistö
,
K.
Kukli
,
T.
Sajavaara
,
M.
Karppinen
,
H.
Yamauchi
, and
L.
Niinistö
,
Chem. Vap. Deposition
9
,
207
(
2003
).
You do not currently have access to this content.