Strain response of polycrystalline barium titanate (BaTiO3) was investigated under high unipolar electric field (0 to 4 kV/mm) and compressive stress (0 to 400 MPa) in the temperature range from 25 to 160 °C. In the vicinity of the Curie point (TC), nonlinear and hysteretic strain-electric field and strain-stress constitutive behaviors were observed, persisting above TC where they correspond to the well-known electric field induced double loop polarization behavior. Analogous to the electrical double loops, the mechanical (strain-stress) hysteretic behavior above TC is caused by a stress induced phase transition from the paraelectric/paraelastic to ferroelectric/ferroelastic phase; the electro-elastic (strain-electric field) hysteresis is similarly caused by an electric field induced phase transition. The stress and electric field at which transitions occur increase linearly with increasing temperature, exhibiting critical behavior typical for the first order phase transitions. The temperature limit for the induced phase transition extends up to 12 °C over TC. Results are discussed in relation to the Landau-Ginzburg-Devonshire free energy expansion.

1.
C. A.
Randall
,
A.
Kelnberger
,
G. Y.
Yang
,
R. E.
Eitel
, and
T. R.
Shrout
,
J. Electroceram.
14
,
177
(
2005
).
2.
H. D.
Megaw
,
Proc. R. Soc. London, Ser. A
189
,
261
(
1947
).
3.
J. H.
van Santen
and
G. H.
Jonker
,
Nature
159
,
333
(
1947
).
4.
F.
Jona
and
G.
Shirane
,
Ferroelectric Crystals
(
Pergamon
,
NY
,
1962
).
5.
G. A.
Samara
,
Phys. Rev.
151
,
378
(
1966
).
6.
Z.
Syrowiak
,
J. S.
Nikitin
,
E. V.
Sviridov
,
V. M.
Mykhorotov
, and
V. P.
Dudkevich
,
Izv. Akad. Nauk SSSR, Ser. Fiz.
55
,
500
(
1991
).
7.
M. H.
Frey
and
D. A.
Payne
,
Phys. Rev. B
54
,
3158
(
1996
).
8.
M. H.
Frey
,
Z.
Xu
,
P.
Han
, and
D. A.
Payne
,
Ferroelectrics
206
,
337
(
1998
).
9.
G.
Arlt
,
D.
Hennings
, and
G.
de With
,
J. Appl. Phys.
58
,
1619
(
1985
).
10.
G. H.
Jonker
and
J. H.
Vansanten
,
Science
109
,
632
(
1949
).
11.
12.
J. A.
Gonzalo
and
J. M.
Rivera
,
Ferroelectrics
2
,
31
(
1971
).
13.
G.
Picht
,
H.
Kungl
,
M.
Bäurer
, and
M. J.
Hoffmann
,
Funct. Mater. Lett.
3
,
59
(
2010
).
14.
D.
Meyerhofer
,
Phys. Rev.
112
,
413
(
1958
).
15.
Y.
Takagi
,
E.
Sawaguchi
, and
T.
Akioka
,
J. Phys. Soc. Jpn.
3
,
270
(
1948
).
16.
M. E.
Caspari
and
W. J.
Merz
,
Phys. Rev.
80
,
1082
(
1950
).
17.
P. W.
Forsbergh
, Jr.
,
Phys. Rev.
93
,
686
(
1954
).
18.
H.
Jaffe
,
D.
Berlincourt
, and
J. M.
McKee
,
Phys. Rev.
105
,
57
(
1957
).
19.
W. R.
Buessem
,
L. E.
Cross
, and
A. K.
Goswami
,
J. Am. Ceram. Soc.
49
,
36
(
1966
).
20.
R. F.
Brown
,
Can. J. Phys.
39
,
741
(
1961
).
21.
22.
J.
Klimowski
,
Phys. Status Solidi
2
,
456
(
1962
).
23.
A. K.
Goswami
,
J. Phys. Soc. Jpn.
21
,
1037
(
1966
).
24.
A. F.
Devonshire
,
Philos. Mag.
40
,
1040
(
1949
).
25.
G. A.
Rossetti
, Jr.
,
L. E.
Cross
, and
K.
Kushida
,
Appl. Phys. Lett.
59
,
2524
(
1991
).
26.
W. W.
Cao
and
L. E.
Cross
,
Phys. Rev. B
44
,
5
(
1991
).
27.
P.
Marton
,
I.
Rychetsky
, and
J.
Hlinka
,
Phys. Rev. B
81
,
144125
(
2010
).
28.
E.
Fatuzzo
and
W. J.
Merz
,
Ferroelectricity
(
North-Holland
,
Amsterdam
,
1967
).
29.
L. E.
Cross
,
Philos. Mag.
44
,
1161
(
1953
).
30.
W.
Känzig
and
N.
Maikoff
,
Helv. Phys. Acta
24
,
329
(
1951
).
31.
Z.
Kutnjak
,
J.
Petzelt
, and
R.
Blinc
,
Nature
441
,
956
(
2006
).
32.
M. E.
Lines
and
A. M.
Glass
,
Principles and Applications of Ferroelectrics and Related Materials
(
Clarendon
,
Oxford
,
1979
).
33.
T.
Mitsui
,
I.
Tatsuzaki
, and
E.
Nakamura
,
An Introduction to the Physics of Ferroelectrics
(
Gordon and Breach Science
,
NY
,
1976
).
34.
N. A.
Pertsev
,
A. G.
Zembilgotov
, and
A. K.
Tagantsev
,
Phys. Rev. Lett.
80
,
1988
(
1998
).
35.
R. J.
Zeches
,
M. D.
Rossell
,
J. X.
Zhang
,
A. J.
Hatt
,
Q.
He
,
C. H.
Yang
,
A.
Kumar
,
C. H.
Wang
,
A.
Melville
,
C.
Adamo
,
G.
Sheng
,
Y. H.
Chu
,
J. F.
Ihlefeld
,
R.
Erni
,
C.
Ederer
,
V.
Gopalan
,
L. Q.
Chen
,
D. G.
Schlom
,
N. A.
Spaldin
,
L. W.
Martin
, and
R.
Ramesh
,
Science
326
,
977
(
2009
).
36.
J. H.
Haeni
,
P.
Irvin
,
W.
Chang
,
R.
Uecker
,
P.
Reiche
,
Y. L.
Li
,
S.
Choudhury
,
W.
Tian
,
M. E.
Hawley
,
B.
Craigo
,
A. K.
Tagantsev
,
X. Q.
Pan
,
S. K.
Streiffer
,
L. Q.
Chen
,
S. W.
Kirchoefer
,
J.
Levy
, and
D. G.
Schlom
,
Nature
430
,
758
(
2004
).
37.
K. G.
Webber
,
E.
Aulbach
,
T.
Key
,
M.
Marsilius
,
T.
Granzow
, and
J.
Rödel
,
Acta Mater.
57
,
4614
(
2009
).
38.
Y. W.
Li
,
X. L.
Zhou
, and
F. X.
Li
,
J. Phys. D: Appl. Phys.
43
,
175501
(
2010
).
39.
A. J.
Bell
,
J. Appl. Phys.
89
,
3907
(
2001
).
40.
K.
Kinoshita
and
A.
Yamaji
,
J. Appl. Phys.
47
,
371
(
1976
).
41.
A. V.
Polotai
,
A. V.
Ragulya
, and
C. A.
Randall
,
Ferroelectrics
288
,
93
(
2003
).
42.
43.
H.
Kungl
and
M. J.
Hoffmann
,
Acta Mater.
55
,
5780
(
2007
).
44.
N. A.
Roi
,
Acoust. Phys.
1
,
278
(
1955
).
45.
H.
Cao
and
A. G.
Evans
,
J. Am. Ceram. Soc.
76
,
890
(
1993
).
47.
A. B.
Schäufele
and
K. H.
Härdtl
,
J. Am. Ceram. Soc.
79
,
2637
(
1996
).
48.
K. G.
Webber
,
Y.
Zhang
,
W.
Jo
,
J. E.
Daniels
, and
J.
Rödel
,
J. Appl. Phys.
108
,
014101
(
2010
).
49.
A. B.
Kounga Njiwa
,
E.
Aulbach
,
T.
Granzow
, and
J.
Rödel
,
Acta Mater.
55
,
675
(
2007
).
50.
F.
Falk
,
J. Phys. Colloq.
43
,
C4
203
(
1982
).
51.
Y. L.
Li
,
L. E.
Cross
, and
L. Q.
Chen
,
J. Appl. Phys.
98
,
064101
(
2005
).
52.
Y. L.
Wang
,
A. K.
Tagantsev
,
D.
Damjanovic
,
N.
Setter
,
V. K.
Yarmarkin
,
A. I.
Sokolov
, and
I. A.
Lukyanchuk
,
J. Appl. Phys.
101
,
104115
(
2007
).
53.
E. J.
Huibregtse
,
M. E.
Drougard
, and
D. R.
Young
,
Phys. Rev.
98
,
1562
(
1955
).
54.
H. G.
Baerwald
and
D. A.
Berlincourt
,
J. Acoust. Soc. Am.
25
,
703
(
1953
).
55.
56.
J.-H.
Ko
,
T. H.
Kim
,
K.
Roleder
,
D.
Rytz
, and
S.
Kojima
,
Phys. Rev. B
84
,
094123
(
2011
).
57.
J.
Iniguez
,
S.
Ivantchev
,
J. M.
Perez-Mato
, and
A.
Garcia
,
Phys. Rev. B
63
,
144103
(
2001
).
58.
A.
Kumar
and
U. V.
Waghmare
,
Phys. Rev. B
82
,
054117
(
2010
).
59.
D.
Vanderbilt
and
M. H.
Cohen
,
Phys. Rev. B
63
,
094108
(
2001
).
60.
E. J.
Huibregtse
,
W. H.
Bessey
, and
M. E.
Drougard
,
J. Appl. Phys.
30
,
899
(
1959
).
You do not currently have access to this content.