In this paper, we show a way to control cobalt disilicide precipitation during Co ion implantation at high temperatures (650 °C) by affecting radiation defects involved in precipitate nucleation and growth. We demonstrate that the relative shares of different precipitate types nucleated by implantation are strongly affected by defect microstructures deliberately created in investigated samples prior to cobalt implantation. Especially interesting is the effect of a dense ensemble of extremely small (1-3 nm) cavities, which promotes the formation of a relatively uniform layer of coherent cobalt disilicide precipitates with a narrow size distribution. In order to better understand the mechanism of the microstructural influence on the precipitate nucleation modes during Co implantation, we investigate the disilicide precipitation using different implantation setups and compare the results with those for cavity-free Si specimens implanted in similar conditions.

1.
V. A.
Borodin
,
M.-O.
Ruault
,
M. G.
Ganchenkova
, and
F.
Fortuna
,
Solid State Phenom.
108–109
,
133
(
2005
).
2.
M.-O.
Ruault
,
F.
Fortuna
,
V. A.
Borodin
,
M. G.
Ganchenkova
, and
M. A.
Kirk
,
J. Appl. Phys.
104
,
033527
(
2008
).
3.
F.
Fortuna
,
V. A.
Borodin
,
M.-O.
Ruault
,
E.
Oliviero
, and
M. A.
Kirk
,
Phys. Rev. B
84
,
144118
(
2011
).
4.
S.
Mantl
,
Mater. Sci. Rep.
8
,
1
(
1992
).
5.
D.
Kashchiev
,
Nucleation. Basic Theory with Applications
(
Butterworth/Heinemann
,
Oxford
,
2001
).
6.
V.
Raineri
and
U.
Campisano
,
Nucl. Instrum. Methods B
120
,
56
(
1996
).
7.
D. M.
Follstaedt
,
S. M.
Myers
,
G. A.
Petersen
, and
J. W.
Medernach
,
J. Electron. Mater.
25
,
157
(
1996
).
8.
J.
Wong-Leung
,
J. S.
Williams
, and
M.
Petravic
,
Appl. Phys. Lett.
72
,
2418
(
1998
).
9.
J.
Wong-Leung
,
J. S.
Williams
,
A.
Kinomura
,
Y.
Nakano
,
Y.
Hayashi
, and
D. J.
Eaglesham
,
Phys. Rev. B
59
,
7990
(
1999
).
10.
J. S.
Williams
,
M. J.
Conway
,
J.
Wong-Leung
,
P. N. K.
Deenapanray
,
M.
Petravic
,
R. A.
Brown
,
D. J.
Eaglesham
, and
D. C.
Jacobson
,
Appl. Phys. Lett.
75
,
2424
(
1999
).
11.
S. M.
Myers
,
M.
Seibt
, and
W.
Schröter
,
J. Appl. Phys.
88
,
3795
(
2000
).
12.
J. S.
Williams
,
X.
Zhu
,
M. C.
Ridgway
,
M. J.
Conway
,
J.
Wong-Leung
,
X. F.
Zhu
,
M.
Petravic
,
F.
Fortuna
,
M.-O.
Ruault
,
H.
Bernas
,
A.
Kinomura
,
Y.
Nakano
, and
Y.
Hayashi
,
Nucl. Instrum. Methods B
178
,
33
(
2001
).
13.
J. S.
Williams
,
X.
Zhu
,
M. C.
Ridgway
,
M. J.
Conway
,
B. C.
Williams
,
F.
Fortuna
,
M.-O.
Ruault
, and
H.
Bernas
,
Appl. Phys. Lett.
77
,
4280
(
2000
).
14.
V.
Raineri
,
M.
Saggio
, and
E.
Rimini
,
J. Mater. Res.
15
,
1449
(
2000
).
15.
C. C.
Griffioen
,
J. H.
Evans
,
P. C.
De Jong
, and
A.
Van Veen
,
Nucl. Instrum. Methods Phys. Res. B
27
,
417
(
1987
).
16.
V.
Raineri
,
P. G.
Fallica
,
G.
Percolla
,
A.
Battaglia
,
M.
Barbagallo
, and
S. U.
Campisano
,
J. Appl. Phys.
78
,
3727
(
1995
).
17.
S.
Godey
,
E.
Ntsoenzok
,
T.
Sauvage
,
A.
van Veen
,
F.
Labohm
,
M. F.
Beaufort
, and
J. F.
Barbot
,
Mater. Sci. Eng. B
73
,
54
(
2000
).
18.
M.-L.
David
,
F.
Pailloux
,
V.
Mauchamp
, and
L.
Pizzagalli
,
Appl. Phys. Lett.
98
,
171903
(
2011
).
19.
R.
Delamare
, PhD dissertation (
Université d'Orléans
,
2003
).
20.
J. S.
Williams
,
M. J.
Conway
,
B. C.
Williams
, and
J.
Wong-Leung
,
Appl. Phys. Lett.
78
,
2867
(
2001
).
21.
A.
Peeva
,
R.
Koegler
, and
W.
Skorupa
,
Nucl. Instrum. Methods Phys. Res. B
206
,
71
(
2003
).
22.
S.
Mirabella
,
E.
Bruno
,
F.
Priolo
,
F.
Giannazzo
,
C.
Bongiorno
,
V.
Raineri
,
E.
Napolitani
, and
A.
Carnera
,
Appl. Phys. Lett.
88
,
191910
(
2006
).
23.
S. L.
Ellingboe
and
M. C.
Ridgway
,
Nucl. Instrum. Methods B
127/128
,
90
(
1997
).
24.
A.
Peeva
,
P. F. P.
Fichtner
,
D. L.
da Silva
,
M.
Behar
,
R.
Koegler
, and
W.
Skorupa
,
J. Appl. Phys.
91
,
69
(
2002
).
25.
E.
Bruno
,
S.
Mirabella
,
F.
Priolo
,
E.
Napolitani
,
C.
Bongiorno
, and
V.
Raineri
,
J. Appl. Phys.
101
,
023515
(
2007
).
26.
M.-A.
Nguyen
, Ph.D. dissertation (
Univ. Paris-Sud
,
2009
), http://hal.archives-ouvertes.fr/docs/00/52/58/40/PDF/these_my_anh-reduit.pdf.
27.
M. A.
Nguyen
,
M.-O.
Ruault
, and
F.
Fortuna
,
Adv. Nat. Sci.: Nanosci. Nanotechnol.
3
,
015015
(
2012
).
28.
J.
Chaumont
,
F.
Lalu
,
M.
Salomé
,
A. M.
Lamoise
, and
H.
Bernas
, “
A medium energy facility for variable temperature implantation and analysis
,”
Nucl. Instrum. Methods B
189
,
193
(
1981
).
29.
C. W.
Allen
,
L. L.
Funk
, and
E. A.
Ryan
,
Mater. Res. Soc. Symp.
396
,
641
(
1995
), also http://www.msd.anl.gov/groups/ht/
30.
Y.
Serruys
,
P.
Trocellier
,
S.
Miro
,
E.
Bordas
,
M. O.
Ruault
,
O.
Kaïtasov
,
S.
Henry
,
O.
Leseigneur
,
Th.
Bonnaillie
,
S.
Pellegrino
,
S.
Vaubaillon
, and
D.
Uriot
,
J. Nucl. Mater.
386–388
,
967
(
2009
), also http://jannus.in2p3.fr/
31.
J. P.
Biersack
and
J. F.
Ziegler
,
The Stopping and Ranges of Ions in Solids
(
Lulu
,
Morisville USA
,
2008
); see also http://www.srim.org for code description.
32.
D. J.
Eaglesham
,
P. A.
Stolk
,
H. J.
Gossmann
,
T. E.
Haynes
, and
J. M.
Poate
,
Nucl. Instrum. Methods B
106
,
191
(
1995
).
33.
A.
Claverie
,
L. F.
Giles
,
M.
Omri
,
B.
de Mauduit
,
G.
Ben Assayag
, and
D.
Mathiot
,
Nucl. Instrum. Methods B
147
,
1
(
1999
).
34.
C. W. T.
Bulle-Lieuwma
,
A. H.
Van Ommen
,
D. E. W.
Vandenhoudt
,
J. J. M.
Ottenheim
, and
A. F.
de Jong
,
J. Appl. Phys.
70
,
3093
(
1991
).
35.
V. C.
Venezia
,
T. E.
Haynes
,
A.
Agarwal
,
H.-J.
Gossmann
, and
D. J.
Eaglesham
,
Mater. Res. Soc. Symp. Proc.
469
,
303
(
1997
).
36.
D. J.
Eaglesham
,
T. E.
Haynes
,
H.-J.
Gossmann
,
D. C.
Jacobson
,
P. A.
Stolk
, and
J. M.
Poate
,
Appl. Phys. Lett.
70
,
3281
(
1997
).
37.
R. A.
Brown
,
O.
Kononchuk
,
G. A.
Rozgonyi
,
S.
Koveshnikov
,
A. P.
Knights
,
P. J.
Simpson
, and
F.
Gonzlez
,
J. Appl. Phys.
84
,
2459
(
1998
).
38.
V. C.
Venezia
,
T. E.
Haynes
,
A.
Agarwal
,
L.
Pelaz
,
H.-J.
Gossmann
,
D. C.
Jacobson
, and
D. J.
Eaglesham
,
Appl. Phys. Lett.
74
,
1299
(
1999
).
39.
R.
Kalyanaraman
,
T. E.
Haynes
,
M.
Yoon
,
B. C.
Larson
,
D. C.
Jacobson
,
H.-J.
Gossmann
, and
C. S.
Rafferty
,
Nucl. Instrum Methods. B
175–177
,
182
(
2001
).
40.
M. D.
Giles
,
J. Electrochem. Soc.
138
,
1160
(
1991
).
41.
T. W.
Simpson
and
I. V.
Mitchell
,
Nucl. Instrum. Methods Phys. Res. B
127/128
,
94
(
1997
).
42.
J.
Li
and
K. S.
Jones
,
Appl. Phys. Lett.
73
,
3748
(
1998
).
43.
V. A.
Borodin
,
Nucl. Instrum. Methods Phys. Res. B
282
,
33
(
2012
).
44.
V. A.
Borodin
,
K.-H.
Heinig
, and
S.
Reiss
,
Phys. Rev. B
56
,
5332
(
1997
).
45.
V.
Raineri
,
S.
Coffa
,
E.
Szilagyi
,
J.
Gyulai
, and
E.
Rimini
,
Phys. Rev. B
61
,
937
(
2000
).
46.
M.
Tamura
,
T.
Ando
, and
K.
Ohyu
,
Nucl. Instrum. Methods Phys. Res. B
59
,
572
(
1991
).
47.
O. W.
Holland
,
J. D.
Budai
, and
B.
Nielsen
,
Mater. Sci. Eng., A
253
,
240
(
1998
).
48.
P.
Lévêque
,
H. K.
Nielsen
,
P.
Pellegrino
,
A.
Hallén
,
B. G.
Svensson
,
A. Y.
Kuznetsov
,
J.
Wong-Leung
,
C.
Jagadish
, and
V.
Privitera
,
J. Appl. Phys.
93
,
871
(
2003
).
49.
M.
Palard
,
M.-O.
Ruault
,
H.
Bernas
,
M.
Strobel
, and
K.-H.
Heinig
, in
Microscopy Semiconductor Materials
, Institute of Physics Conference Series, Vol.
157
(
AIP
,
New York
,
1997
), p.
501
.
50.
M.
Seibt
and
W.
Schröter
,
Philos. Mag. A
59
,
337
(
1989
).
51.
K.
Nordlund
,
M.
Ghaly
,
R. S.
Averback
,
M.
Caturla
,
T.
Diaz de la Rubia
, and
J.
Tarus
,
Phys. Rev. B
57
,
7556
(
1998
).
52.
S. M.
Myers
,
G. A.
Petersen
, and
C. H.
Seager
,
J. Appl. Phys.
80
,
3717
(
1996
).
53.
G. A.
Petersen
,
S. M.
Myers
and
D. M.
Follstaedt
,
Nucl. Instrum. Methods Phys. Res. B.
127/128
,
301
(
1997
).
54.
W.
Deweerd
,
R.
Moons
,
J.
Verheyden
,
S.
Bukshpan
,
G.
Langouche
, and
H.
Pattyn
,
Nucl. Instrum. Methods Phys. Res. B
106
,
252
(
1995
).
55.
F.
Schiettekatte
,
C.
Wintgens
, and
S.
Roorda
,
Appl. Phys. Lett.
74
,
1857
(
1999
).
56.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
57.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
58.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
59.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
60.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
You do not currently have access to this content.