High-field electron transport properties in a two-dimensional nanolayer are studied by an application of the anisotropic nonequilibrium distribution function, a natural extension of the Fermi-Dirac distribution by inclusion of energy gained/absorbed in a mean free path (mfp). The drift velocity for conical band structure of graphene is shown to rise linearly with the electric field in a low electric field that is below the critical electric field. The critical electric field, equal to thermal voltage divided by the mfp, marks the transition from ohmic linear transport to saturated behavior in a high electric field. As field rises beyond its critical value, the drift velocity is sublinear resulting in ultimate saturation; the ultimate saturation velocity is comparable to the Fermi velocity in graphene. The quantum emission is found not to affect the mobility, but is efficient in lowering the saturation velocity. Excellent agreement is obtained with the experimental data for graphene on silicon dioxide substrate.

1.
V. K.
Arora
, “
Quantum transport in nanowires and nanographene
,” in
28th International Conference on Microelectronics (MIEL2012), Nis, Serbia
(unpublished), invited paper, available at http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6222787&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6222787.
2.
V. K.
Arora
, in
Nanotechnology for Telecommunications Handbook
, edited by
S.
Anwar
(
CRC/Taylor and Francis Group
,
Oxford, UK
,
2010
), pp.
309
334
.
3.
V. K.
Arora
,
D. C. Y.
Chek
,
M. L. P.
Tan
, and
A. M.
Hashim
,
J. Appl. Phys.
108
(
11
),
114314
114318
(
2010
).
4.
R.
Vidhi
,
M. L. P.
Tan
,
T.
Saxena
,
A. M.
Hashim
, and
V. K.
Arora
,
Curr. Nanosci.
6
(
5
),
492
495
(
2010
).
5.
M. T.
Ahmadi
,
M. L. P.
Tan
,
R.
Ismail
, and
V. K.
Arora
,
Int. J. Nanotechnol.
6
(
7–8
),
601
617
(
2009
).
6.
K. K.
Thornber
,
J. Appl. Phys.
51
(
4
),
2127
2136
(
1980
).
7.
H. M.
Dong
,
W.
Xu
, and
F. M.
Peeters
,
J. Appl. Phys.
110
(
6
),
063704
(
2011
).
8.
J.
Chauhan
and
J.
Guo
,
Appl. Phys. Lett.
95
(
2
),
023120
(
2009
).
9.
T.
Fang
,
A.
Konar
,
H. L.
Xing
, and
D.
Jena
,
Phys. Rev. B
84
(
12
),
125450
(
2011
).
10.
V. E.
Dorgan
,
M. H.
Bae
, and
E.
Pop
,
Appl. Phys. Lett.
97
(
8
),
082112
(
2010
).
11.
V. K.
Arora
, “
Hot electrons: myth or reality
,” in
International Workshop on the Physics of Semiconductor Devices
, Delhi, India,
2002
, Vol. 4746(2), pp.
563
569
[Note(s): XXXIX, p. 1460].
12.
V. K.
Arora
,
Curr. Nanosci.
5
(
2
),
227
231
(
2009
).
13.
N.
Huu-Nha
,
D.
Querlioz
,
S.
Galdin-Retailleau
, and
P.
Dollfus
,
IEEE Trans. Electron. Devices
58
(
3
),
798
804
(
2011
).
14.
V. K.
Arora
, “
Ballistic Transport in Nanoscale Devices
,” invited paper,
MIXDES 2012: 19th International Conference MIXED Design of Integrated Circuits and Systems
, Wasaw, Poland,
2012
(unpublished).
15.
M.
Lundstrom
and
J.
Guo
,
Nanoscale Transistor
(
Springer
,
New York
,
2006
).
16.
V. K.
Arora
and
M. A.
Al-Mass'Ari
,
Phys. Rev. B
21
(
2
),
876
878
(
1980
).
17.
Y. H.
Wu
,
T.
Yu
, and
Z. X.
Shen
,
J. Appl. Phys.
108
(
7
),
071301
(
2010
).
18.
A. H.
Castro Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
(
1
),
109
162
(
2009
).
19.
K. S.
Novoselov
,
S. V.
Morozov
,
T. M. G.
Mohinddin
,
L. A.
Ponomarenko
,
D. C.
Elias
,
R.
Yang
,
I. I.
Barbolina
,
P.
Blake
,
T. J.
Booth
,
D.
Jiang
,
J.
Giesbers
,
E. W.
Hill
, and
A. K.
Geim
,
Phys. Status Solidi B
244
(
11
),
4106
4111
(
2007
).
20.
M. L. P.
Tan
,
V. K.
Arora
,
I.
Saad
,
M.
Taghi Ahmadi
, and
R.
Ismail
,
J. Appl. Phys.
105
(
7
),
074503
(
2009
).
21.
I.
Saad
,
M. L. P.
Tan
,
A. C. E.
Lee
,
R.
Ismail
, and
V. K.
Arora
,
Microelectron. J.
40
(
3
),
581
583
(
2009
).
22.
V. K.
Arora
,
M. L. P.
Tan
,
I.
Saad
, and
R.
Ismail
,
Appl. Phys. Lett.
91
(
10
),
103510
(
2007
).
23.
P. H. S.
Wong
and
D.
Akinwande
,
Carbon Nanotube and Graphene Device Physics
(
Cambridge University Press
,
Cambridge
,
2011
).
24.
I.
Gierz
,
C.
Riedl
,
U.
Starke
,
C. R.
Ast
, and
K.
Kern
,
Nano Lett.
8
(
12
),
4603
4607
(
2008
).
25.
V. K.
Arora
,
Quantum Nanoengineering
(
Wilkes University
,
Wilkes-Barre, PA
,
2012
).
26.
R.
Qindeel
,
M. A.
Riyadi
,
M. T.
Ahmadi
, and
V. K.
Arora
,
Curr. Nanosci.
7
(
2
),
235
239
(
2011
).
27.
V. K.
Arora
,
Jpn. J. Appl. Phys., Part 1
24
(
5
),
537
545
(
1985
).
28.
M. A.
Riyadi
and
V. K.
Arora
,
J. Appl. Phys.
109
,
056103
(
2011
).
29.
G.
Samudra
,
S. J.
Chua
,
A. K.
Ghatak
, and
V. K.
Arora
,
J. Appl. Phys.
72
(
10
),
4700
4704
(
1992
).
30.
V. K.
Arora
,
M. S. Z.
Abidin
,
M. L. P.
Tan
, and
M. A.
Riyadi
,
J. Appl. Phys.
111
(
5
),
054301
(
2012
).
31.
V. K.
Arora
,
D. C. Y.
Chek
, and
A. M.
Hashim
,
Solid State Electron.
61
(
1
),
87
92
(
2011
).
32.
V. K.
Arora
,
M. S. Z.
Abidin
,
S.
Tembhurne
, and
M. A.
Riyadi
,
Appl. Phys. Lett.
99
,
063106
(
2011
).
33.
M. S.
Purewal
,
B. H.
Hong
,
A.
Ravi
,
B.
Chandra
,
J.
Hone
, and
P.
Kim
,
Phys. Rev. Lett.
98
(
18
),
186808
(
2007
).
34.
M.
Buttiker
and
R.
Landauer
,
J. Stat. Phys.
58
(
1–2
),
371
373
(
1990
).
35.
M.
Büttiker
,
Phys. Rev. B
33
(
5
),
3020
(
1986
).
36.
K.
Natori
,
IEEE Trans. Electron. Devices
59
(
1
),
79
86
(
2012
).
37.
G.
Mugnaini
and
G.
Iannaccone
,
IEEE Trans. Electron. Devices
52
(
8
),
1802
1806
(
2005
).
38.
G.
Mugnaini
and
G.
Iannaccone
,
IEEE Trans. Electron. Devices
52
,
1795
1801
(
2005
).
39.
V.
Arora
,
M. L. P.
Tan
, and
T.
Saxena
,
Solid State Electron.
54
(
12
),
1617
1624
(
2010
).
40.
T.
Saxena
,
D. C. Y.
Chek
,
M. L. P.
Tan
, and
V. K.
Arora
,
IEEE Trans. Educ.
54
(
1
),
34
40
(
2011
).
You do not currently have access to this content.