A detailed study of the role of oxygen vacancies in determining the effective mass and high temperature (300–1000 K) thermoelectric properties of La-doped epitaxial SrTiO3 thin films is presented. It is observed that at intermediate temperatures, a transition from degenerate to non-degenerate behavior is observed in the Seebeck coefficient, but not electrical conductivity, which is attributed to heterogeneous oxygen non-stoichiometry. Heikes formula is found to be invalid for the films with oxygen vacancies. By fitting the spectroscopic ellipsometry (SE) data, obtained in the range 300–2100 nm, using a Drude-Lorentz dispersion relation with two Lorentz oscillators, the electrical and optical properties of the films are extracted. Using the excellent agreement between the transport properties extracted from SE modeling and direct electrical measurements, we demonstrate that an increase in concentration of oxygen vacancies results in a simultaneous increase of both carrier concentration and electron effective mass, resulting in a higher power factor.

1.
W.
Zhong
and
D.
Vanderbilt
,
Phys. Rev. B
53
(
9
),
5047
(
1996
);
K. A.
Müller
and
H.
Burkard
,
Phys. Rev. B
19
(
7
),
3593
(
1979
).
2.
J. H.
Haeni
,
P.
Irvin
,
W.
Chang
,
R.
Uecker
,
P.
Reiche
,
Y. L.
Li
,
S.
Choudhury
,
W.
Tian
,
M. E.
Hawley
,
B.
Craigo
,
A. K.
Tagantsev
,
X. Q.
Pan
,
S. K.
Streiffer
,
L. Q.
Chen
,
S. W.
Kirchoefer
,
J.
Levy
, and
D. G.
Schlom
,
Nature
430
(
7001
),
758
(
2004
).
3.
H. P. R.
Frederikse
and
W. R.
Hosler
,
Phys. Rev.
161
(
3
),
822
(
1967
).
4.
G.
Binnig
,
A.
Baratoff
,
H. E.
Hoenig
, and
J. G.
Bednorz
,
Phys. Rev. Lett.
45
(
16
),
1352
(
1980
).
5.
C.
Cen
,
S.
Thiel
,
J.
Mannhart
, and
J.
Levy
,
Science
323
(
5917
),
1026
(
2009
);
[PubMed]
D.
Kan
,
T.
Terashima
,
R.
Kanda
,
A.
Masuno
,
K.
Tanaka
,
S.
Chu
,
H.
Kan
,
A.
Ishizumi
,
Y.
Kanemitsu
,
Y.
Shimakawa
, and
M.
Takano
,
Nature Mater.
4
(
11
),
816
(
2005
).
6.
J. C.
Ruiz-Morales
,
J.
Canales-Vázquez
,
C.
Savaniu
,
D.
Marrero-López
,
W.
Zhou
, and
J. T. S.
Irvine
,
Nature
439
(
7076
),
568
(
2006
).
7.
W.
Meevasana
,
P. D. C.
King
,
R. H.
He
,
S. K.
Mo
,
M.
Hashimoto
,
A.
Tamai
,
P.
Songsiriritthigul
,
F.
Baumberger
, and
Z. X.
Shen
,
Nature Mater.
10
(
2
),
114
(
2011
).
8.
K.
Janicka
,
J. P.
Velev
, and
E. Y.
Tsymbal
,
Phys. Rev. Lett.
102
(
10
),
106803
(
2009
);
[PubMed]
Y.
Wang
,
M. K.
Niranjan
,
S. S.
Jaswal
, and
E. Y.
Tsymbal
,
Phys. Rev. B
80
(
16
),
165130
(
2009
).
9.
P.
Zubko
,
S.
Gariglio
,
M.
Gabay
,
P.
Ghosez
, and
J.-M.
Triscone
,
Ann. Rev. Condens. Matter Phys.
2
(
1
),
141
(
2011
).
10.
K.
Koumoto
,
Y.
Wang
,
R.
Zhang
,
A.
Kosuga
, and
R.
Funahashi
,
Ann. Rev. Mater. Res.
40
(
1
),
363
(
2010
).
H.
Ohta
,
S.
Kim
,
Y.
Mune
,
T.
Mizoguchi
,
K.
Nomura
,
S.
Ohta
,
T.
Nomura
,
Y.
Nakanishi
,
Y.
Ikuhara
,
M.
Hirano
,
H.
Hosono
, and
K.
Koumoto
,
Nature Mater.
6
(
2
),
129
(
2007
).
12.
I.
Terasaki
,
Y.
Sasago
, and
K.
Uchinokura
,
Phys. Rev. B
56
(
20
),
R12685
(
1997
).
13.
T. M.
Tritt
and
M. A.
Subramanian
,
MRS Bull.
31
(
3
),
188
(
2006
).
14.
C.
Yu
,
M. L.
Scullin
,
M.
Huijben
,
R.
Ramesh
, and
A.
Majumdar
,
Appl. Phys. Lett.
92
(
19
),
191911
(
2008
).
15.
S.
Ohta
,
T.
Nomura
,
H.
Ohta
,
M.
Hirano
,
H.
Hosono
, and
K.
Koumoto
,
Appl. Phys. Lett.
87
(
9
),
092108
(
2005
).
16.
S.
Ohta
,
T.
Nomura
,
H.
Ohta
, and
K.
Koumoto
,
J. Appl. Phys.
97
,
034106
(
2005
).
17.
A.
Kinaci
,
C.
Sevik
, and
T.
Cagin
,
Phys. Rev. B
82
(
15
),
155114
(
2010
).
18.
B.
Jalan
,
R.
Engel-Herbert
,
T. E.
Mates
, and
S.
Stemmer
,
Appl. Phys. Lett.
93
(
5
),
052907
(
2008
).
19.
M.
Cardona
,
Phys. Rev.
140
(
2A)
,
A651
(
1965
);
M.
Capizzi
and
A.
Frova
,
Phys. Rev. Lett.
25
(
18
),
1298
(
1970
).
20.
Y.
Kozuka
,
M.
Kim
,
H.
Ohta
,
Y.
Hikita
,
C.
Bell
, and
H. Y.
Hwang
,
Appl. Phys. Lett.
97
(
22
),
222115
(
2010
).
21.
C.
Yu
,
M. L.
Scullin
,
M.
Huijben
,
R.
Ramesh
, and
A.
Majumdar
,
Appl. Phys. Lett.
92
(
9
),
092118
(
2008
);
J.
Liu
,
C. L.
Wang
,
W. B.
Su
,
H. C.
Wang
,
P.
Zheng
,
J. C.
Li
,
J. L.
Zhang
, and
L. M.
Mei
,
Appl. Phys. Lett.
95
(
16
),
162110
(
2009
).
22.
W.
Wunderlich
,
H.
Ohta
, and
K.
Koumoto
,
Phys. B: Condens. Matter
404
(
16
),
2202
(
2009
).
23.
J.
Ravichandran
,
W.
Siemons
,
M. L.
Scullin
,
S.
Mukerjee
,
M.
Huijben
,
J. E.
Moore
,
A.
Majumdar
, and
R.
Ramesh
,
Phys. Rev. B
83
(
3
),
035101
(
2011
).
24.
T.
Okuda
,
K.
Nakanishi
,
S.
Miyasaka
, and
Y.
Tokura
,
Phys. Rev. B
63
(
11
),
113104
(
2001
).
25.
H. P. R.
Frederikse
,
W. R.
Hosler
,
W. R.
Thurber
,
J.
Babiskin
, and
P. G.
Siebenmann
,
Phys. Rev.
158
(
3
),
775
(
1967
).
26.
J. L. M.
van Mechelen
,
D.
van der Marel
,
C.
Grimaldi
,
A. B.
Kuzmenko
,
N. P.
Armitage
,
N.
Reyren
,
H.
Hagemann
, and
I. I.
Mazin
,
Phys. Rev. Lett.
100
(
22
),
226403
(
2008
).
27.
M.
Takizawa
,
K.
Maekawa
,
H.
Wadati
,
T.
Yoshida
,
A.
Fujimori
,
H.
Kumigashira
, and
M.
Oshima
,
Phys. Rev. B
79
(
11
),
113103
(
2009
).
28.
G.
Dresselhaus
,
A. F.
Kip
, and
C.
Kittel
,
Phys. Rev.
98
(
2
),
368
(
1955
).
29.
D. L.
Young
,
T. J.
Coutts
, and
V. I.
Kaydanov
,
Rev. Sci. Instrum.
71
(
2
),
462
(
2000
).
30.
H.
Fujiwara
,
Spectroscopic Ellipsometry: Principles and Applications
(
Wiley
,
New York
,
2007
).
31.
M.
Born
and
E.
Wolf
,
Principles of Optics
(
Pergamon
,
New York
,
1975
).
32.
S.-G.
Lim
,
S.
Kriventsov
,
T. N.
Jackson
,
J. H.
Haeni
,
D. G.
Schlom
,
A. M.
Balbashov
,
R.
Uecker
,
P.
Reiche
,
J. L.
Freeouf
, and
G.
Lucovsky
,
J. Appl. Phys.
91
(
7
),
4500
(
2002
).
33.
A. I.
Abutaha
,
S. R.
Sarath Kumar
, and
H. N.
Alshareef
,
Appl. Phys. Lett.
100
(
16
),
162106
(
2012
).
34.
W.
Luo
,
W.
Duan
,
S. G.
Louie
, and
M. L.
Cohen
,
Phys. Rev. B
70
(
21
),
214109
(
2004
).
35.
K.
Fukushima
and
S.
Shibagaki
,
Thin Solid Films
315
(
1–2
),
238
(
1998
).
36.
S.
Lee
,
G.
Yang
,
R. H. T.
Wilke
,
S.
Trolier-McKinstry
, and
C. A.
Randall
,
Phys. Rev. B
79
(
13
),
134110
(
2009
).
37.
T.
Yamamoto
,
T.
Sakemi
,
K.
Awai
, and
S.
Shirakata
,
Thin Solid Films
451–452
(
0
),
439
(
2004
).
38.
V.
Savchuk
,
A.
Boulouz
,
S.
Chakraborty
,
J.
Schumann
, and
H.
Vinzelberg
,
J. Appl. Phys.
92
(
9
),
5319
(
2002
).
39.
M.
Ahrens
,
R.
Merkle
,
B.
Rahmati
, and
J.
Maier
,
Phys. B: Condens. Matter
393
(
1–2
),
239
(
2007
).
40.
M.
Matsuo
,
S.
Okamoto
,
W.
Koshibae
,
M.
Mori
, and
S.
Maekawa
,
Phys. Rev. B
84
(
15
),
153107
(
2011
).
41.
K.
Kobayashi
,
S.
Yamaguchi
,
M.
Mukaida
, and
T.
Tsunoda
,
Solid State Ion.
144
(
3–4
),
315
(
2001
).
42.
A.
Shakouri
,
Ann. Rev. Mater. Res.
41
(
1
),
399
(
2011
).
43.
B. M.
Askerov
,
Electron Transport Phenomena in Semiconductors
(
World Scientific
,
Singapore
,
1994
);
R. A.
Smith
,
Semiconductors
(
Cambridge University Press
,
London
,
1956
).
44.
P. A.
Cox
,
Transition Metal Oxides
(
Oxford University Press
,
New York
,
1992
).
45.
R.
Moos
,
A.
Gnudi
, and
K.
Heinz Hardtl
,
J. Appl. Phys.
78
(
8
),
5042
(
1995
).
46.
D. A.
Muller
,
N.
Nakagawa
,
A.
Ohtomo
,
J. L.
Grazul
, and
H. Y.
Hwang
,
Nature
430
(
7000
),
657
(
2004
).
47.
D. D.
Cuong
,
B.
Lee
,
K. M.
Choi
,
H.-S.
Ahn
,
S.
Han
, and
J.
Lee
,
Phys. Rev. Lett.
98
(
11
),
115503
(
2007
);
[PubMed]
N.
Shanthi
and
D. D.
Sarma
,
Phys. Rev. B
57
(
4
),
2153
(
1998
).
48.
S. S. A.
Seo
,
W. S.
Choi
,
H. N.
Lee
,
L.
Yu
,
K. W.
Kim
,
C.
Bernhard
, and
T. W.
Noh
,
Phys. Rev. Lett.
99
(
26
),
266801
(
2007
).
49.
W.
Noun
,
B.
Berini
,
Y.
Dumont
,
P. R.
Dahoo
, and
N.
Keller
,
J. Appl. Phys.
102
(
6
),
063709
(
2007
).
50.
B. C.
Mohanty
,
Y. H.
Jo
,
D. H.
Yeon
,
I. J.
Choi
, and
Y. S.
Cho
,
Appl. Phys. Lett.
95
(
6
),
062103
(
2009
).
51.
G. I.
Meijer
,
U.
Staub
,
M.
Janousch
,
S. L.
Johnson
,
B.
Delley
, and
T.
Neisius
,
Phys. Rev. B
72
(
15
),
155102
(
2005
).
52.
V. I.
Kaydanov
,
T. J.
Coutts
, and
D. L.
Young
,
Studies of Band Structure and Free Carrier Scattering in Transparent Conducting Oxides Based on Combined Measurements of Electron Transport Phenomena
(
Department of Energy
,
Washington, DC
,
2000
), available at http://www.osti.gov/bridge/purl.cover.jsp?purl=/767313-JzbZBl/native/.
53.
T.
Ohnishi
,
K.
Shibuya
,
T.
Yamamoto
, and
M.
Lippmaa
,
J. Appl. Phys.
103
(
10
),
103703
(
2008
).
You do not currently have access to this content.