This study focuses on finite-element calculations of the electrical properties of metal-semiconductor-metal devices processed on heavily compensated, high resistivity, Cd0.9Zn0.1Te crystals. Deep and shallow levels used in the calculations were taken from published experimental results. Several compensation configurations, yielding similar resistivities were investigated. The capture cross-sections of the deep traps were introduced as an additional parameter. It is shown that with pure-Ohmic contacts the characteristics of Metal-Semiconductor-Metal devices are similar to the non-compensated case. With Schottky contacts it is shown that the device characteristics greatly depend on the compensation level and on capture cross section, yielding anything from Ohmic-like behavior to Schottky-like characteristics. Furthermore, it is shown that Schottky contacts and rectifying I-V behavior do not imply classical Schottky electric field and space charge distributions.

1.
T. E.
Schlesinger
,
J. E.
Toney
,
H.
Yoon
,
E. Y.
Lee
,
B. A.
Brunett
,
L.
Franks
, and
R. B.
James
,
Mater. Sci. Eng.
32
,
103
(
2001
).
2.
R. B.
James
,
B.
Brunett
,
J.
Heffelfinger
,
J.
Van Scyoc
,
J.
Lund
,
F. P.
Doty
,
C. L.
Lingren
,
R.
Olsen
,
E.
Cross
,
H.
Hermon
,
H.
Yoon
,
N.
Hilton
,
M.
Schieber
,
E. Y.
Lee
,
J.
Toney
,
T. E.
Schlesinger
,
M.
Goorsky
,
W.
Yao
,
H.
Chen
, and
A.
Burger
,
J. Electron. Mater.
27
(
6
),
788
(
1998
).
3.
M.
Fiederle
,
D.
Ebling
,
C.
Eiche
,
D. M.
Hofmann
,
M.
Salk
,
W.
Stadler
,
K. W.
Benz
, and
B. K.
Meyer
,
J. Cryst. Growth
138
,
529
(
1994
).
4.
M.
Witkowska-Baran
,
A.
Mycielski
,
D.
Kochanowska
,
B.
Witkowska
,
W.
Kaliszek
,
R.
Jakieła
,
E.
Łusakowska
,
V.
Domukhovski
, and
M.
Węgrzycki
,
J. Cryst. Growth.
320
,
1
(
2011
).
5.
U.
Lachish
,
Nucl. Instrum. Methods Phys. Res. A
436
,
146
(
1999
).
6.
M.
Chmeissani
,
C.
Frojdh
,
O.
Gal
,
X.
Llopart
,
J.
Ludwig
,
M.
Maiorino
,
E.
Manach
,
G.
Mettivier
,
M. C.
Montesi
,
C.
Ponchut
,
P.
Russo
,
L.
Tlustos
, and
A.
Zwerger
,
IEEE Trans. Nucl. Sci.
51
(
5
),
2379
(
2004
).
7.
B.
Fraboni
,
D.
Cavalcoli
,
A.
Cavallini
, and
P.
Fochuk
,
J. Appl. Phys.
105
,
073705
(
2009
).
8.
Q.
Li
,
W.
Jie
,
L.
Fu
,
X.
Zhang
,
X.
Wang
,
X.
Bai
, and
G.
Zha
,
Mater. Sci. Eng., B
135
,
15
(
2006
).
9.
Y.
Xu
,
P. J.
Sellin
,
A.
Lohstroh
,
W.
Jie
,
T.
Wang
,
C.
Mills
,
P.
Veeramani
, and
M.
Veale
,
J. Appl. Phys.
105
,
083101
(
2009
).
10.
A.
Castaldini
,
A.
Cavallini
,
B.
Frabonia
,
L.
Polenta
,
P.
Fernandez
, and
J.
Piqueras
,
Mater. Sci. Eng., B
42
,
302
(
1996
).
11.
A.
Castaldini
,
A.
Cavallini
,
B.
Fraboni
,
P.
Fernandez
, and
J.
Piqueras
,
J. Appl. Phys.
83
(
4
),
2121
(
1998
).
12.
O. A.
Matveev
,
N. K.
Zelenina
,
A. I.
Terent'ev
,
A. A.
Tomasov
, and
V. N.
Gus'kov
,
Tech. Phys. Lett.
33
(
4
),
358
(
2007
).
13.
F. P.
Doty
,
J. F.
Butler
,
J. F.
Schetzina
, and
K. A.
Bowers
,
J. Vac. Sci. Technol. B
10
(
4
),
1418
(
1992
).
14.
P.
Yu
,
W.
Jie
, and
T.
Wanga
,
Nucl. Instrum. Methods Phys. Res. A
643
,
53
(
2011
).
15.
J. L.
Pautrat
,
N.
Magnea
, and
J. P.
Faurie
,
J. Appl. Phys.
53
,
8668
(
1982
).
16.
P.
Fochuk
,
Ye.
Verzhak
, and
O.
Panchuk
,
Phys. Status Solidi B
244
(
5
),
1655
(
2007
).
17.
G. M.
Martin
,
J. P.
Farges
,
G.
Jacob
,
J. P.
Haliais
, and
G.
Poiblaud
,
J. Appl. Phys.
51
,
2840
(
1980
).
18.
M.
Fiederle
,
C.
Eiche
,
M.
Salk
,
R.
Schwarz
,
K. W.
Benz
,
W.
Stadler
,
D. M.
Hofmann
, and
B. K.
Meyer
,
J. Appl. Phys.
84
,
6689
(
1998
).
19.
V.
Babentsov
,
J.
Franc
, and
R. B.
James
,
Appl. Phys. Lett.
94
,
052102
(
2009
).
20.
A.
Cavallini
,
B.
Fraboni
, and
W.
Dusi
,
IEEE Trans. Nucl. Sci.
52
(
5
),
1964
(
2005
).
21.
ISE-TCAD, Process and Device Simulation Tools, Synopsys http://www.synopsys.com.
22.
A.
Ruzin
,
J. Appl. Phys.
109
,
014509
(
2011
).
23.
W.
Shockley
and
W. T.
Read
, Jr.
,
Phys. Rev.
87
(
5
),
835
(
1952
).
You do not currently have access to this content.