Cd0.9Zn0.1Te:In crystals with semi-intrinsic conductivity have been investigated. Temperature dependence of their electrical characteristics shows a number of unconventional peculiarities: the thermal activation energy of conductivity is “anomalously” low (0.60–0.62 eV); the resistivity at elevated temperatures is greater than its intrinsic value for Cd0.9Zn0.1Te; the inversion of the conduction from n- to p-type occurs at a temperature slightly above 300 K, etc. The observed features are explained in terms of statistics of electrons and holes in a semiconductor containing a self-compensation complex, whose concentration is much higher than those of uncontrolled (background) impurities and defects. Comparison of the calculation results and experimental data leads to the conclusion that the donor level, which is far distant from the middle of the band gap, dominates in the conductivity of the material and its compensation is virtually complete (Na/Nd = 0.99996–0.99998) as predicted by theory.

1.
C.
Szeles
,
Phys. Status Solidi B
241
,
783
(
2004
).
2.
S. D.
Sordo
,
L.
Abbene
,
E.
Caroli
,
A. M.
Mancini
,
A.
Zappettini
, and
P.
Ubertini
,
Sensors
9
,
3491
(
2009
).
3.
R. H.
Redus
,
A. C.
Huber
, and
J. A.
Pantazis
,
Nucl. Instrum. Methods A
458
,
214
(
2001
).
4.
G. F.
Neumark
,
Phys. Rev. B
26
,
2250
(
1982
).
5.
M.
Prokesch
and
C.
Szeles
,
Phys. Rev. B
75
,
245204
(
2007
).
6.
V.
Babentsov
,
J.
Franc
, and
R. B.
James
.
Appl. Phys. Lett.
94
(
5
),
052102
(
2009
).
7.
M.-H.
Du
,
H.
Nakinaka
, and
D. J.
Singh
,
Phys. Rev. B
77
,
094122
(
2008
).
9.
F. F.
Morehead
and
G.
Mandel
,
Phys. Rev.
137
,
A924
(
1965
).
10.
J. I.
Pankove
,
Optical Processes in Semiconductors
(
Prentice-Hall
,
New Jersey
,
1971
), pp.
46
47
.
11.
T.
Toshifumi
,
S.
Adachi
,
H.
Nakanishi
, and
K.
Ohtsuka
,
Jpn. J. Appl. Phys., Part 1
32
,
3496
(
1993
).
12.
S.
Adachi
,
Optical Properties of Crystalline and Amorphous Semiconductors: Materials and Fundamental Principles
(
Kluwer Academic
,
Dordrecht
,
1999
), pp.
179
180
.
13.
S. S.
Devlin
,
in Physics and Chemistry of II–VI Compounds
, edited by
M.
Aven
and
J. S.
Prener
(
North-Holland
,
New York
,
1967
).
14.
I.
Turkevych
,
R.
Grill
,
J.
Franc
,
E.
Belas
,
P.
Hoschl
, and
P.
Moravec
,
Semicond. Sci. Technol.
17
,
1064
(
2002
).
15.
W.
Stadler
,
D. M.
Hofmann
,
H. C.
Alt
,
T.
Muschik
,
B. K.
Meyer
,
E.
Weigel
,
G.
Müller-Vogt
,
M.
Salk
,
E.
Rupp
, and
K. W.
Benz
,
Phys. Rev. B
51
,
10619
(
1995
).
16.
U. V.
Desnica
,
I. D.
Desnica-Frankovic
,
R.
Magerle
,
A.
Burchard
, and
M.
Deicher
,
J. Cryst. Growth
197
,
612
(
1999
).
17.
T. E.
Schlesinger
,
J. E.
Toney
,
H.
Yoon
,
E. Y.
Lee
,
B. A.
Brunett
,
L.
Franks
, and
R. B.
James
,
Mater. Sci. Eng.
32
,
103
(
2001
).
18.
S.
Lany
,
H.
Wolf
, and
Th.
Wichert
,
Mater. Res. Soc. Symp. Proc.
763
,
B1
3
(
2003
).
19.
20.
C. H.
Park
and
D. J.
Chadi
,
Phys. Rev. B
52
,
11884
(
1995
).
21.
V. E.
Sedov
,
O. A.
Matveev
,
A. I.
Terent’ev
, and
N. K.
Zelenina
,
Semiconductors
41
,
1033
(
2007
).
22.
M.
Fiederle
,
A.
Fauler
,
J.
Konrath
,
V.
Babentsov
,
J.
Franc
, and
R. B.
James
,
IEEE Trans. Nucl. Sci.
51
,
1864
(
2004
).
23.
J.
Rodríguez-Fernández
,
V.
Carcelén
,
P.
Hidalgo
,
N.
Vijayan
,
J.
Piqueras
,
N. V.
Sochinskii
,
J. M.
Perez
, and
E.
Diéguez
.
J. Appl. Phys.
106
,
044901
(
2009
).
You do not currently have access to this content.