Experiments have shown strong effects of some substrates on the localized plasmons of metallic nano particles but they are inconclusive on the affecting parameters. Here, we have used discrete dipole approximation in conjunction with Sommerfeld integral relations to explain the effect of the substrates as a function of the parameters of incident radiation. The radiative coupling can both quench and enhance the resonance and its dependence on the angle and polarization of incident radiation with respect to the surface is shown. Non-radiative interaction with the substrate enhances the plasmon resonance of the particles and can shift the resonances from their free-space energies significantly. The non-radiative interaction of the substrate is sensitive to the shape of particles and polarization of incident radiation with respect to substrate. Our results show that the plasmon resonances in coupled and single particles can be significantly altered from their free-space resonances and are quenched or enhanced by the choice of substrate and polarization of incident radiation.

1.
M. L.
Brongersma
and
V. M.
Shaleev
,
Science
328
,
440
(
2010
).
2.
P. K.
Jain
and
M. A.
El-Sayed
,
J. Phys. Chem. C
112
,
4954
4960
(
2008
).
3.
A.
Baňos
,
Dipole Radiation in the Presence of a Conducting Half-Space
(
Pergamon
,
Oxford
,
1966
).
4.
R.
Ruppin
,
Surf. Sci.
127
,
108
118
(
1983
).
5.
P. A.
Bobbert
and
I.
Vlieger
,
Physica
147A
,
115
141
(
1987
).
6.
S.
Mochizuki
and
R.
Ruppin
,
J. Phys.: Condens. Matter
3
,
10037
10041
(
1991
).
7.
N.
Félidj
,
J.
Aubard
,
G.
Lévi
,
J. R.
Krenn
,
G.
Schider
,
A.
Leitner
, and
F. R.
Aussenegg
,
Phys. Rev. B
66
,
245407
(
2002
).
8.
G.
Xu
,
Y.
Chen
,
M.
Tazawa
, and
P.
Jin
,
Appl. Phys. Lett.
88
,
043114
(
2006
).
9.
K. C.
Vernon
,
A. M.
Funston
,
C.
Novo
,
D. E.
Gómez
,
P.
Mulvaney
, and
T. J.
Davis
,
Nano Lett.
10
(
6
),
2080
2086
(
2010
).
10.
V. V.
Gozhenko
,
L. G.
Grechko
, and
K. W.
Whites
,
Phys. Rev. B
68
,
125422
(
2003
).
11.
P. A.
Letnes
,
I.
Simonsen
, and
D. L.
Mills
,
Phys. Rev. B
83
,
075426
(
2011
).
12.
J.
Yan
,
K. S.
Thygesen
, and
K. W.
Jacobsen
,
Phys. Rev. Lett.
106
,
146803
(
2011
).
13.
Y.
Wu
and
P.
Nordlander
,
J. Phys. Chem. C
114
,
7302
7307
(
2010
).
14.
A. N.
Grigorenko
,
A. K.
Geim
,
H. F.
Gleeson
,
Y.
Zhang
,
A. A.
Firsov
,
I. Y.
Khrushchev
, and
J.
Petrovic
,
Nature
438
,
335
338
(
2005
).
15.
T. R.
Jensen
,
M. D.
Malinsky
,
C. L.
Haynes
, and
R. P.
Van Duyne
,
J. Phys. Chem. B
104
,
10549
10556
(
2000
).
16.
A. M.
Funston
,
C.
Novo
,
T. J.
Davis
, and
P.
Mulvaney
,
Nano Lett.
9
(
4
),
1651
1658
(
2009
).
17.
P. J.
Valle
,
E. M.
Ortiz
, and
J. M.
Saiz
,
Opt. Commun.
137
,
334
342
(
1997
).
18.
P.
Spinelli
,
C.
van Lare
,
E.
Verhagen
, and
A.
Polman
,
Opt. Express
19
(
S3
),
A303
A311
(
2011
).
19.
A.
Sommerfeld
,
Ann. Phys. Leipz.
28
,
665
(
1909
);
A.
Sommerfeld
,
Ann. Phys. Leipz.
81
,
1135
(
1926
);
A.
Sommerfeld
,
Partial Differential Equations of Physics
(
Academic
,
New York
,
1949
).
20.
B. T.
Draine
and
J.
Goodman
,
Astrophys. J.
405
,
685
697
(
1993
).
21.
R.
Schmehl
,
B. M.
Nebeker
, and
E. D.
Hirleman
,
JOSA A
14
,
3026
3036
(
1997
).
22.
D. L.
Lager
and
R. J.
Lytle
, Report No. UCRL-51821 (Lawrence Livermore Laboratory, Livermore, California,
1975
).
23.
A.
Mohsen
,
IEEE Proc.
129
(
4
),
177
182
(
1982
).
24.
G. J.
Burke
and
E. K.
Miller
,
IEEE Trans. Antennas Propag.
Ap–32
(
10
),
1040
1049
(
1984
).
25.
E.
Bae
and
E. D.
Hirleman
,
J. Quant. Spectrosc. Radiat. Transf.
107
,
470
478
(
2007
).
26.
J.
Rahola
,
SIAM J. Sci. Comput.
17
,
78
89
(
1996
).
27.
P. B.
Johnson
and
R. W.
Christy
,
Phys. Rev. B
6
(
12
),
4370
4379
(
1972
).
28.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic
,
New York
,
1985
).
You do not currently have access to this content.