Glassy, polydomain azobenzene liquid crystal polymer networks (azo-LCNs) have been synthesized, characterized, and modeled to understand composition dependence on large amplitude, bidirectional bending, and twisting deformation upon irradiation with linearly polarized blue-green (440–514 nm) light. These materials exhibit interesting properties for adaptive structure applications in which the shape of the photoresponsive material can be rapidly reconfigured with light. The basis for the photomechanical output observed in these materials is absorption of actinic light by azobenzene, which upon photoisomerization dictates an internal stress within the local polymer network. The photoinduced evolution of the underlying liquid crystal microstructure is manifested as macroscopic deformation of the glassy polymer film. Accordingly, this work examines the polarization-controlled bidirectional bending of highly concentrated azo-LCN materials and correlates the macroscopic output (observed as bending) to measured blocked stresses upon irradiation with blue-green light of varying polarization. The resulting photomechanical output is highly dependent on the concentration of crosslinked azobenzene mesogens employed in the formulation. Experiments that quantify photomechanical bending and photogenerated stress are compared to a large deformation photomechanical shell model to quantify the effect of polarized light interactions with the material during static and dynamic polarized light induced deformation. The model comparisons illustrate differences in internal photostrain and deformation rates as a function of composition and external mechanical constraints.

1.
Y.
Zhao
and
T.
Ikeda
,
Smart Light-Responsive Materials
(
Wiley
,
Hoboken, NJ
,
2009
).
2.
H.
Koerner
,
T.
White
,
N.
Tabirya
,
T.
Bunning
, and
R.
Vaia
, “
Photogenerating work from polymers
,”
Mater. Today
11
,
34
42
(
2008
).
3.
S.
Serak
,
N.
Tabirian
,
R.
Vergara
,
T.
White
,
R.
Vaia
, and
T.
Bunning
, “
Liquid cyrstalline polymer cantilever oscillators fueled by light
,”
Soft Matter
6
,
779
783
(
2010
).
4.
R.
Lovrien
, “
The photoviscosity effect
,”
Proc. Natl. Acad. Sci. U.S.A.
57
,
236
242
(
1967
).
5.
C.
Eisenbach
, “
Isomerization of aromatic azo chromophores in poly(ethyl acrylate) networks and photomechanical effect
,”
Polymer
21
,
1175
1179
(
1980
).
6.
H.
Finkelmann
,
E.
Nishikawa
,
G.
Pereira
, and
M.
Warner
, “
A new opto-mechanical effect in solids
,”
Phys. Rev. Lett.
87
,
015501
(
2001
).
7.
P.
Hogan
,
A.
Tajbakhsh
, and
E.
Terentjev
, “
UV manipulation of order and macroscopic shape in nematic elastomers
,”
Phys. Rev. E
65
,
041720
(
2002
).
8.
K.-M.
Lee
,
H.
Koerner
,
R.
Vaia
,
T.
Bunning
, and
T.
White
, “
Relationship between the photomechanical response and the thermomechanical properties of azobenzene liquid crystalline polymer networks
,”
Macromolecules
43
,
8185
8190
(
2010
).
9.
T.
Ikeda
and
O.
Tsutsumi
, “
Optical switching and image storage by means of azobenzene liquid-crystal films
,”
Science
268
,
1873
1875
(
1995
).
10.
K.
Lee
,
N.
Tabiryan
,
T.
Bunning
, and
T.
White
, “
Photomechanical mechanism and structure-property considerations in the generation of photomechanical work in glassy, azobenzene liquid crystal polymer networks
,”
J. Mater. Chem.
22
,
691
(
2012
).
11.
K.
Harris
,
R.
Cuypers
,
P.
Scheibe
,
C.
van Oosten
,
C.
Bastiaansen
,
J.
Lub
, and
D.
Broer
, “
Large amplitude light-induced motion in high elastic modulus polymer actuators
,”
J. Mater. Chem.
15
,
5043
5048
(
2005
).
12.
M.
Kondo
,
M.
Sugimoto
,
M.
Yamada
,
Y.
Naka
,
J.
Mamiya
,
M.
Kinoshita
,
A.
Shishido
,
Y.
Yu
, and
T.
Ikeda
, “
Effect of concentration of photoactive chromophores on photomechanical properties of crosslinked azobenzene liquid-crystalline polymers
,”
J. Mater. Chem.
20
,
117
122
(
2010
).
13.
J.
Simo
and
D.
Fox
, “
On a stress resultant geometrically exact shell model. Part I: Formulation and optimal parameterization
,”
Comput. Methods Appl. Mech. Eng.
72
,
267
304
(
1989
).
14.
J.
Simo
,
D.
Fox
, and
M.
Rifai
, “
On a stress resultant geometrically exact shell model. Part II: The linear theory; Computational aspects
,”
Comput. Methods Appl. Mech. Eng.
73
,
53
92
(
1989
).
15.
J.
Simo
,
D.
Fox
, and
M.
Rifai
, “
On a stress resultant geometrically exact shell model. Part III: Computational aspects of the nonlinear theory
,”
Comput. Methods Appl. Mech. Eng.
79
,
21
70
(
1990
).
16.
J.
Simo
,
M.
Rifai
, and
D.
Fox
, “
On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non-linear dynamics
,”
Int. J. Numer. Methods. Eng.
34
,
117
164
(
1992
).
17.
R. L.
Taylor
,
User manual of FEAP—A Finite Element Analysis Program
(
University of California at Berkeley
,
2010
).
18.
M. L.
Dunn
, “
Photomechanics of mono- and polydomain liquid crystal elastomer films
,”
J. Appl. Phys.
102
,
013506
(
2007
).
19.
M. L.
Dunn
and
K.
Maute
, “
Photomechanics of blanket and patterned liquid crystal elastomer films
,”
Mech. Mater.
41
,
1083
1089
(
2009
).
20.
K.
Long
,
T.
Scott
,
H.
Qi
,
C.
Bowman
, and
M.
Dunn
, “
Photomechanics of light-activated polymers
,”
J. Mech. Phys. Solids
57
,
1103
1121
(
2009
).
21.
C. D.
Modes
,
M.
Warner
,
C. L.
van Oosten
, and
D.
Corbett
, “
Anisotropic response of glassy splay-bend and twist nematic cantilevers to light and heat
,”
Phys. Rev. E
82
,
041111
(
2010
).
22.
M.
Warner
,
C. D.
Modes
, and
D.
Corbett
, “
Curvature in nematic elastica responding to light and heat
,”
Proc. R. Soc. A
466
,
2975
2989
(
2010
).
23.
C. D.
Modes
,
K.
Bhattacharya
, and
M.
Warner
, “
Disclination-mediated thermo-optical response in nematic glass sheets
,”
Phys. Rev. E
81
,
060701
(
2010
).
24.
M.
Warner
and
L.
Mahadevan
, “
Photoinduced deformations of beams, plates, and films
,”
Phys. Rev. Lett.
92
,
134302
(
2004
).
25.
D.
Corbett
and
M.
Warner
, “
Linear and nonlinear photo-induced deformations of cantilevers
,”
Phys. Rev. Lett.
99
,
174302
(
2007
).
26.
N.
Tabiryan
,
S.
Serak
,
X.-M.
Dai
, and
T.
Bunning
, “
Polymer film with optically controlled form and actuation
,”
Opt. Express
13
,
7442
7448
(
2005
).
27.
D.
Chapelle
and
K.-J.
Bathe
,
The Finite Element Analysis of Shells—Fundamentals
(
Springer
,
2010
).
28.
R.
Loudon
,
The Quantum Theory of Light
, 3rd edition (
Clarendon
,
Oxford
,
2000
).
29.
D.
Corbett
and
M.
Warner
, “
Bleaching and stimulated recovery of dyes and of photocantilevers
,”
Phys. Rev. E
77
,
051710
(
2008
).
30.
T.
Fujino
and
T.
Tahara
, “
Picosecond time-resolved raman study of trans-azobenzene
,”
J. Phys. Chem. A
104
,
4203
4210
(
2000
).
31.
E.
Reissner
, “
The effect of transverse shear deformation of the bending of elastic plates
,”
J. Appl. Mech.
67
,
A69
A77
(
1945
).
32.
R. D.
Mindlin
, “
Influence of rotary inertia and shear on flexural motion of isotropic elastic plates
,”
J. Appl. Mech.
18
,
31
38
(
1951
).
33.
L.
Malvern
,
Introduction to the Mechanics of a Continuous Medium
(
Prentice-Hall, Inc.
,
Englewood Cliffs, NJ
,
1969
).
34.
J.
Reddy
,
An Introduction to Nonlinear Finite Element Analysis
(
Oxford University Press
,
Oxford
,
2004
).
35.
C.
van Oosten
,
D.
Corbett
,
D.
Davies
,
M.
Warner
,
C.
Bastiaansen
, and
D.
Broer
, “
Bending dynamics and directionality reversal in liquid crystal network photoactuators
,”
Macromolecules
41
,
8592
8596
(
2008
).
36.
D.
Corbett
and
M.
Warner
, “
Changing liquid crystal elastomer ordering with light a route to opto-mechanically responsive materials
,”
Liq. Cryst.
36
,
1263
1280
(
2009
).
37.
H.
Wang
,
K.-M.
Lee
,
T.
White
, and
W.
Oates
, “
Trans-cis and trans-cis-trans microstructure evolution of azobenzene liquid crystal polymer networks
,”
Macromol. Theory Simul.
21
(
5
),
285
301
(
2012
).
38.
G. R.
Fowles
,
Introduction to Modern Optics
(
Dover
,
1989
).
39.
J. E.
Huber
,
N. A.
Fleck
, and
M. F.
Ashby
, “
The selection of mechanical actuators based on performance indices
,”
Proc. R. Soc. London, Ser. A
453
,
2185
2205
(
1997
).
40.
D.
Statman
and
I.
Janossy
, “
Study of photoisomerization of azo dyes in liquid crystals
,”
J. Chem. Phys.
118
,
3222
3232
(
2003
).
You do not currently have access to this content.