In 1982, Voronkov presented a model describing point defect behavior during the growth of single crystal Si from a melt and derived an expression to predict if the crystal was vacancy- or self-interstitial-rich. Recently, Vanhellemont claimed that one should take into account the impact of compressive stress introduced by the thermal gradient at the melt/solid interface by considering the hydrostatic pressure dependence of the formation enthalpy of the intrinsic point defects. To evaluate the impact of thermal stress more correctly, the pressure dependence of both the formation enthalpy (Hf) and the migration enthalpy (Hm) of the intrinsic point defects should be taken into account. Furthermore, growing single crystal Si is not under hydrostatic pressure but almost free of external pressure (generally in Ar gas under reduced pressure). In the present paper, the dependence of Hf and Hm on the pressure P, or in other words, the pressure dependence of the formation energy (Ef) and the relaxation volume (vf), is quantified by density functional theory calculations. Although a large number of ab initio calculations of the properties of intrinsic point defects have been published during the last years, calculations for Si crystals under pressure are rather scarce. For vacancies V, the reported pressure dependences of HfV are inconsistent. In the present study, by using 216-atom supercells with a sufficient cut-off energy and mesh of k-points, the neutral I and V are found to have nearly constant formation energies EfI and EfV for pressures up to 1 GPa. For the relaxation volume, vfI is almost constant while vfV decreases linearly with increasing pressure P. In case of the hydrostatic pressure Ph, the calculated formation enthalpy HfI and migration enthalpy HmI at the [110] dumbbell site are given by HfI = 3.425 − 0.057 × Ph (eV) and HmI = 0.981 − 0.039 × Ph (eV), respectively, with Ph given in GPa. The calculated HfV and HmV dependencies on Ph given by HfV = 3.543 − 0.021 × Ph2 − 0.019 × Ph (eV) and HmV = 0.249 + 0.018 × Ph2 − 0.037 × Ph (eV), respectively. These results indicate that, when assuming that the pre-factors in the Arrhenius equation are not influenced, hydrostatic pressure up to 1 GPa leads to a slight increase of the thermal equilibrium concentration and diffusion of vacancies but this increase is much smaller than that of self-interstitials. The thermal stress in growing Si crystal is compressive, and thus the point defects are under internal pressure. Taking into account the differences in the enthalpies of point defects between hydrostatic pressure and internal pressure, Si crystal shifts to being V-rich with an increase in thermal stress during crystal growth.

1.
V. V.
Voronkov
,
J. Cryst. Growth
59
,
625
(
1982
).
2.
V. V.
Voronkov
and
R.
Falster
,
J. Cryst. Growth
194
,
76
(
1998
).
3.
W.
von Ammon
,
E.
Dornberger
,
H.
Ölkrug
, and
H.
Weidner
,
J. Cryst. Growth
151
,
273
(
1995
).
4.
M.
Hourai
,
E.
Kajita
,
T.
Nagashima
,
H.
Fujiwara
,
S.
Ueno
,
S.
Sadamitsu
,
S.
Miki
, and
T.
Shigematsu
,
Mater. Sci. Forum
196–201
,
1713
(
1995
).
5.
E.
Dornberger
,
D.
Gräf
,
M.
Suhren
,
U.
Lambert
,
P.
Wagner
,
F.
Dupret
, and
W.
von Ammon
,
J. Cryst. Growth
180
,
343
(
1997
).
6.
S. H.
Lee
,
D. W.
Song
,
H. J.
Oh
, and
D. H.
Kim
,
Jpn. J. Appl. Phys., Part 1
49
,
121303
(
2010
).
7.
E.
Dornberger
and
W.
von Ammon
,
J. Electrochem. Soc.
143
,
1648
(
1996
).
8.
T.
Abe
and
T.
Takahashi
,
J. Cryst. Growth
334
,
16
(
2011
) and references therein.
9.
J.
Vanhellemont
,
J. Appl. Phys.
110
,
063519
(
2011
);
J.
Vanhellemont
,
J. Appl. Phys.
110
,
129903
(
2011
).
10.
B.
Puchala
, “
Table 2.1 and 2.2
,” Ph.D. thesis,
The University of Michigan
,
2009
and references therein.
11.
S.
Centoni
,
B.
Sadigh
,
G.
Gilmer
,
T.
Lenosky
,
T.
Díaz de la Rubia
, and
C.
Musgrave
,
Phys. Rev. B
72
,
195206
(
2005
).
12.
A.
Antonelli
and
J.
Bernholc
,
Phys. Rev. B
40
,
10643
(
1989
).
13.
A.
Antonelli
,
E.
Kaxiras
, and
D.
Chadi
,
Phys. Rev. B
81
,
2088
(
1998
).
14.
M.
Ganchenkova
,
A.
Nazarov
, and
A.
Kuznetsov
,
Nucl. Instrum. Methods Phys. Res. B
202
,
107
(
2003
).
15.
M.
Aziz
,
Mater. Sci. Semicond. Process.
4
,
397
(
2001
) and references therein.
16.
The castep code is available from Accelrys Software Inc.
17.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
18.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
19.
J.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
20.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
21.
T.
Fischer
and
J.
Almlof
,
J. Phys. Chem.
96
,
9768
(
1992
).
22.
M.
Puska
,
S.
Pöykkö
,
M.
Pesola
, and
R.
Nieminen
,
Phys. Rev. B
58
,
1318
(
1998
).
23.
W.
Windl
,
ECS Trans.
3
,
171
182
(
2006
).
24.
H.
Monkhorst
and
J.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
25.
F.
El-Mellouhi
,
N.
Mousseau
, and
P.
Ordejón
,
Phys. Rev. B
70
,
205202
(
2004
).
26.
J.
Poirier
,
Introduction to the Physics of the Earth’s Interior
, 2nd ed. (
Cambridge University Press
,
New York
,
2000
).
27.
O.
Nielsen
and
R.
Martin
,
Phys. Rev. B
32
,
3792
(
1985
).
28.
T.
Tsukada
,
M.
Hozawa
, and
N.
Imaishi
,
J. Chem. Eng. Jpn.
23
,
186
(
1990
).
29.
W.
Harrison
,
Mater. Res. Soc. Symp. Proc.
469
,
211
(
1997
).
30.
B.
Welber
,
C.
Kim
,
M.
Cardona
, and
S.
Rodriguez
,
Solid State Commun.
17
,
1021
(
1975
).
31.
A.
Ural
,
P.
Griffin
, and
J. D.
Plummer
,
Phys. Rev. Lett.
83
,
3454
(
1999
).
32.
33.
H.
Bracht
,
H.
Silvestri
,
I.
Sharp
, and
E.
Haller
,
Phys. Rev. B
75
,
035211
(
2007
).
34.
G.
Watkins
,
Mater. Res. Soc. Symp. Proc.
469
,
139
(
1997
).
35.
O.
Sugino
and
A.
Oshiyama
,
Phys. Rev. B
46
,
012335
(
1992
).
36.
W.
Windl
,
M.
Daw
,
N.
Carlson
, and
M.
Laudon
,
Mater. Res. Soc. Symp. Proc.
677
,
AA9
4
(
2001
).
37.
Y.
Zhao
,
M.
Aziz
,
H.
Gossmann
,
S.
Mitha
, and
D.
Schiferl
,
Appl. Phys. Lett.
74
,
31
(
1999
).
38.
Y.
Zhao
,
M.
Aziz
,
H.
Gossmann
,
S.
Mitha
, and
D.
Schiferl
,
Appl. Phys. Lett.
75
,
941
(
1999
).
You do not currently have access to this content.