The mechanism and properties of bio-photon emission and absorption in bio-tissues were studied using Pang’s theory of bio-energy transport, in which the energy spectra of protein molecules are obtained from the discrete dynamic equation. From the energy spectra, it was determined that the protein molecules could both radiate and absorb bio-photons with wavelengths of <3 μm and 5–7 μm, consistent with the energy level transitions of the excitons. These results were consistent with the experimental data; this consisted of infrared absorption data from collagen, bovine serum albumin, the protein-like molecule acetanilide, plasma, and a person’s finger, and the laser-Raman spectra of acidity I-type collagen in the lungs of a mouse, and metabolically active Escherichia coli. We further elucidated the mechanism responsible for the non-thermal biological effects produced by the infrared light absorbed by the bio-tissues, using the above results. No temperature rise was observed; instead, the absorbed infrared light promoted the vibrations of amides as well the transport of the bio-energy from one place to other in the protein molecules, which changed their conformations. These experimental results, therefore, not only confirmed the validity of the mechanism of bio-photon emission, and the newly developed theory of bio-energy transport mentioned above, but also explained the mechanism and properties of the non-thermal biological effects produced by the absorption of infrared light by the living systems.

1.
K. H.
Li
,
F. A.
Popp
,
W.
Nagl
 et al, in
Coherent Excitation in Biological Systems
, edited by
H.
Frohlich
and
F.
Krerner
(
Springer-Verlag
,
Berlin
,
1983
), pp.
117
134
.
2.
F. A.
Popp
,
K. H.
Li
, and
Q.
Gu
,
Recent Advances and Biophoton in Research and its Application
(
World Scientific
,
Singapore
,
1992
), pp.
145
212
.
3.
Q.
Gu
and
F. A.
Popp
, “
Biophoton physics: Potential measure of organizational order
,” in
Biological Effects of Light
, edited by
E. G.
Jung
and
M. F.
Holick
(
Walter de Gruyter
,
Berlin
,
1994
), pp.
425
444
.
4.
F. A.
Popp
,
Electromagnetic Bio-information
, edited by
F. A.
Popp
,
V.
Warnke
,
H. L.
Koning
,
W.
Peschka
(
Urban & Schuarzenberg Munchen Wien
,
Baltimore
,
1979
), pp.
144
176
.
5.
R.
Van Wijk
,
H.
Van Aken
,
W. P.
Wei
, and
F. A.
Popp
, “
Light-induced photon emission by mammalian cells
,”
J. Photochem. Photobiol. B
18
,
75
(
1993
).
6.
Q.
Gu
and
F. A.
Popp
, “
Nonlinear response of biophoton emission to external perturbations
,”
Cell. Mol. Life Sci.
48
,
1069
1082
(
1992
).
7.
M.-W.
Ho
,
F. A.
Popp
, and
U.
Warnke
,
Bioelectrodynamics and Biocommunication
(
World Scientific
,
Singapore
,
1994
), pp.
157
245
.
8.
B. J.
Trzebiotowska
,
B.
Kochel
,
J.
Slawinke
, and
W.
Strek
,
Photon Emission From Biological Systems
(
World Scientific
Singapore
,
1987
).
9.
X.-F.
Pang
, “
A molecular dynamic theory of ultraweak bio-photon emission in the living systems and its properties
,”
Chin. J. At. Mol. Phys.
12
,
411
420
(
1995
);
X.-F.
Pang
,
Chin. J. At. Mol. Phys.
13
,
70
78
(
1996
).
10.
X.-F.
Pang
, “
Investigation on molecular mechanism cured sickness for infrared medical instrument
,”
Chin. J. Biomed. Eng.
8
,
39
43
(
1999
).
11.
X.-F.
Pang
, “
A statistical theory for the bio-photon emission of the living systems
,”
Chin. J. At. Mol. Phys.
16
,
288
293
(
1997
).
12.
X.-F.
Pang
,
The Theory of Nonlinear Quantum Mechanics
(
Chinese Chongqing
,
Chongqing
,
1994
), pp.
567
634
.
13.
X. S.
Chi
,
D. B.
Pang
,
Y. M.
Li
,
H. Y.
Yang
,
D. Q.
Ye
, and
G. X.
Zhu
, “
The measurement of ultraweak luminescence emission from human body surface
,”
Chin. J. Biophys.
10
,
165
168
(
1994
).
14.
A. S.
Davydov
, “
The theory of contraction of proteins under their excitation
,”
J. Theor. Biol.
38
,
559
569
(
1973
).
15.
A. S.
Davydov
,
Solitons in Molecuar Systems
, 2nd ed. (
Reidel
,
Dordrecht
,
1985
), 1991.
16.
P. L.
Christiansen
and
A. C.
Scott
,
Davydov’s Soliton Revisited
(
Plenum
,
New York
,
1990
).
17.
A. C.
Scott
, “
Dynamics of Davydov solitons
,”
Phys. Rev. A
26
,
578
595
(
1982
).
18.
D. W.
Brown
, “
Balancing the Schrodinger equation with Davydovansatze
,”
Phys. Rev. A
37
,
5010
5011
(
1988
).
19.
D. W.
Brown
,
K.
Lindenberg
, and
B. J.
West
, “
Nonlinear density-matrix equation for the study of finite temperature soliton dynamics
,”
Phys. Rev. B
35
,
6169
6181
(
1987
).
20.
X.-F.
Pang
, “
Soliton motions in organic protein molecules
,”
Chin. J. Biochem. Biophys.
18
,
1
6
(
1986
).
21.
L.
Cruzeiro
,
J.
Halding
,
P. L.
Christiansen
,
O.
Skovgard
, and
A. C.
Scott
, “
Temperature effects on the Davydov soliton
,”
Phys. Rev. A
37
,
880
887
(
1988
).
22.
L.
Cruzeio-Hansson
, “
Mechanism of thermal destabilization of the Davydov soliton
,”
Phys. Rev. A
45
,
4111
4115
(
1992
).
23.
W.
Förner
, “
Quantum and disorder effects on Davydov soliton theory
,”
Phys. Rev. A
44
,
2694
(
1991
).
24.
P. S.
Lomdahl
and
W. C.
Kerr
, “
Do Davydov solitons exist at 300K?
,”
Phys. Rev. Lett.
55
,
1235
1238
(
1985
).
25.
X.
Wang
,
D. W.
Brown
, and
K.
Lindenberg
, “
Quantum Monte Carlo simulation of the Davydov model
,”
Phys. Rev. Lett.
62
,
1796
1799
(
1989
).
26.
J. P.
Cottingham
and
J. W.
Schweitzer
, “
Calculation of the lifetime of a Davydov soliton at finite temperature
,”
Phys. Rev. Lett.
62
,
1792
1795
(
1989
).
27.
X.-F.
Pang
, “
The properties of collective excitation in organic protein molecular system
,”
J. Phys. Condens. Matter
2
,
9541
9556
(
1990
).
28.
X.-F.
Pang
, “
Comment on ‘The thermodynamic properties of α-helix protein: A soliton approach,’”
Phys. Rev. E
49
,
4747
4752
(
1994
).
29.
X.-F.
Pang
, “
Influence of the soliton in anharmonic molecular crystals with temperature on Mossbauer effect
,”
Eur. Phys. J. B
10
,
415
425
(
1999
).
30.
X.-F.
Pang
, “
The effect of Raman scattering accompanied by the soliton excitation occurred in the molecular crystals
,”
Physica D
154
,
138
(
2001
).
31.
X.-F.
Pang
, “
Stability of the soliton excited in protein in the biological temperature range
,”
Chin. Phys. Lett.
10
,
573
(
1993
).
32.
X.-F.
Pang
, “
Nonlinear vibrational energy-spectra of molecular crystals
,”
Chin. Phys.
9
,
106
111
(
2000
).
33.
X.-F.
Pang
, “
Distribution of vibrational energy-levels of protein molecular chains
,”
Commun. Theor. Phys.
35
,
763
(
2001
).
34.
X.-F.
Pang
, “
Mossbauer effect arising from supersonic soliton motion in organic crystal
,”
Acta Phys. Sin.
42
,
1841
1852
(
1993
).
35.
X.-F.
Pang
, “
Thermal stability of the new soliton transported bio-energy under influence of fluctuations of characteristic parameters at biological temperature in the protein molecules
,”
Int. J. Mod. Phys. B
19
,
4677
4699
(
2005
).
36.
X.-F.
Pang
,
H.-W.
Zhang
,
J.-F.
Yu
, and
Y.-H.
Luo
, “
Influences of variations of characteristic parameters arising from the structure nonuniformity of the protein molecules on states of the soliton transported bio-energy in the improved model
,”
Int. J. Mod. Phys. B
20
,
3027
(
2006
).
37.
X.-F.
Pang
and
Y.-P.
Feng
,
Quantum Mechanics in Nonlinear Systems
(
World Scientific
,
Singapore
,
2005
).
38.
X.-F.
Pang
, “
The theory of bio-energy transport in the protein molecules and its properties
,”
Phys. Life Rev.
8
,
264
286
(
2011
).
39.
X.-F.
Pang
, “
Correctness and completeness of the theory of bio-energy transport
,”
Phys. Life Rev.
8
,
302
306
(
2011
).
40.
X.-F.
Pang
, “
An improvement of the Davydov theory of bio-energy etransport in the protein molecular systems
,”
Phys. Rev. E
62
,
6989
6998
(
2000
).
41.
X.-F.
Pang
, “
The lifetime of the soliton in the improved Davydov model at the biological temperature 300K for protein molecules
,”
Eur. Phys. J. B
19
,
297
308
(
2001
).
42.
X.-F.
Pang
,
H.-W.
Zhang
, and
Y.-H.
Luo
, “
Influences of heat bath and structure disorder in protein molecules on the soliton transported bio-energy in the improved model
,”
J. Phys. Condens. Matter
18
,
613
627
(
2006
).
43.
X.-F.
Pang
,
H.-W.
Zhang
,
J.-F.
Yu
, and
Y.-P.
Feng
, “
States and properties of the soliton transported bio-energy in nonuniform protein molecules at physiological temperature
,”
Phys. Lett. A
335
,
408
415
(
2005
).
44.
X.-F.
Pang
and
Y.-H.
Luo
, “
Stabilization of the soliton transported bio-energy in protein molecules in the Improved Model
,”
Commun. Theor. Phys.
41
,
470
476
(
2004
).
45.
X.-F.
Pang
,
J.-F.
Yu
, and
Y.-H.
Luo
, “
Influences of quantum and disorder effects on solitons exited in protein molecules in improved model
,”
Commun. Theor. Phys.
43
,
367
376
(
2005
).
46.
X.-F.
Pang
, “
The temperature effect of infrared absorption of the protein molecules
,”
Int. J. Infrared Millim. Waves
22
,
277
289
(
2001
).
47.
X.-F.
Pang
and
M.-J.
Liu
, “
Features of motion of soliton transported bio-energy in aperiodic α–helix protein molecules with three channels
,”
Commun. Theor. Phys.
51
,
170
180
(
2009
).
48.
X.-F.
Pang
, “
The soliton theory of bio-energy transport in protein molecules
,” in
Handbook of Solitons, Research, Technology and Applications
, edited by
S. P.
Lang
and
S. H.
Bedore
(
Nova Science
,
New York
,
2009
), pp.
251
298
.
49.
X.-F.
Pang
and
M.-J.
Liu
, “
Features of motion of soliton transported bio-energy in aperiodic alpha-helix protein molecules with three channels
,”
Commun. Theor. Phys.
51
,
170
180
(
2009
).
50.
X.-F.
Pang
, “
The effects of damping and temperature of medium on the soliton excited in α-helix protein molecules with three channels
,”
Mod. Phys. Lett. B
23
,
71
88
(
2009
).
51.
X.-F.
Pang
and
M.-J.
Lui
, “
The influences of temperature and chain-chain interaction on features of soliton excited in alpha-helix protein molecules with three channels
,”
Int. J. Mod. Phys. B
23
,
2303
2322
(
2009
).
52.
X.-F.
Pang
,
J.-F.
Yu
, and
M.-J.
Liu
, “
Changes of properties of the soliton with temperature under influences of structure disorder in the α-helix protein molecules with three channels
,”
Mol. Phys.
108
,
1297
1315
(
2010
).
53.
X.-F.
Pang
,
J.-F.
Yu
, and
Y.-H.
Lao
, “
Combination effects of structure nonuniformity of proteins on the soliton transported bio-energy
,”
Int. J. Mod. Phys. B
21
,
13
42
(
2007
).
54.
X.-F.
Pang
and
M.-J.
Liu
, “
Properties of soliton-transported bio-energy in alpha-helix protein molecules with three channels
,”
Commun. Theor. Phys.
48
,
369
376
(
2007
).
55.
X.-F.
Pang
, “
Theory of bio-energy transport in protein molecules and its experimental evidences as well as applications (A)
,”
Fron. Phys. China
2
,
469
493
(
2007
).
56.
X.-F.
Pang
, “
Influence of structure disorders and temperatures of systems on the bio-energy transport in protein molecules
,”
Fron. Phys. China
3
,
457
488
(
2008
).
57.
J. C.
Eilbeck
,
P. S.
Lomdahl
, and
A. C.
Scott
, “
The discrete self-trapping equation
,”
Physica D
16
,
318
(
1985
).
58.
J. C.
Eilbeck
,
P. S.
Lomdahl
, and
A. C.
Scott
, “
Soliton structure in crystalline acetanilide
,”
Phys. Rev. B
30
,
4073
(
1984
).
59.
A. C.
Scott
, “
Davydov’s soliton
,”
Phys. Rep.
217
,
1
(
1982
).
60.
A. C.
Scott
,
E.
Gratton
,
E.
Shyamsunder
, and
G.
Caren
, “
IR overtone spectrum of the vibrational soliton in crystalline acetanilide
,”
Phys. Rev. B
32
,
3551
3553
(
1982
).
61.
A. C.
Scott
and
J. C.
Eilbeck
, “
On the CH stretch overtones of benzene
,”
Chem. Phys. Lett.
132
,
23
28
(
1986
).
62.
A. C.
Scott
,
D. S.
Lomdahl
, and
J. C.
Eilbeck
, “
Between the local-mode and normal-mode limits
,”
Chem. Phys. Lett.
113
,
29
(
1985
).
63.
G.
Careri
,
U.
Buontempo
,
F.
Galluzzi
,
A. C.
Scott
,
E.
Gratton
, and
E.
Shydmsunder
, “
Spectroscopic evidence for Davydov-like solitons in acetanilide
,”
Phys. Rev. B
30
,
4689
(
1984
).
64.
R. E.
Burgeson
, “
New collagens, new concepts
,”
Annu. Rev. Cell Biol.
4
,
551
(
1988
).
65.
R.
Weaver
,
Molecular Biology
(
McGraw-Hill
,
Boston
,
2000
).
66.
X.-F.
Pang
,
Biophysics
(
Press of University of Electronic Science and Technology of China
,
Chengdu
,
2007
).
67.
X.-F.
Pang
,
H.-L.
Xiao
,
G.-P.
Cue
,
H.-W.
Zhang
, and
D.
Bo
, “
Experiment studies of properties of infrared absorption of biological tissues
,”
Int. J. Infrared Millim. Waves
31
,
521
532
(
2010
).
68.
H.-L.
Xiao
,
S.-Q.
Sun
,
Z.
Qun
,
X.-F.
Pang
, and
Q.-P.
Chu
, “
Study of influence of temperature on the structure of collagen in two-dimensional infrared spectrum
,”
Chin. J. At. Mol. Phys.
20
,
81
85
(
2003
).
69.
X.-F.
Pang
, “
Investigation of nonthermally biological effect of infrared light absorbed by life bodies
,”
Phys. Sin.
30
,
525
532
(
2001
).
70.
Y. A.
Vladiminov
,
Photochemistry and Luminescence of Protein
(
Science
,
Moskova
,
1965
).
71.
S. V.
Konev
,
Excited States of Biopolymers
(
Science and technique
,
Minsk
,
1965
).
72.
W. D.
McElroy
and
B.
Glass
,
Light and Life
(
Johns Hopkins
,
1961
), pp.
82
107
.
73.
X.-F.
Pang
, “
Experimental evidences of existence of soliton excited in protein molecules
,”
Physics
26
,
665
667
(
1997
).
74.
Y. J.
Chen
,
L. M.
Li
, and
C. L.
Ma
, “
Functions of biomacromolecules in the fluorescences of blood plasma
,”
Chin. J. Biophys.
9
,
673
176
(
1993
).
75.
Q.-P.
Chu
,
L.-M.
Chen
, and
Q.-N.
Yang
, “
The properties of spectrum of collagen and fiber feature of silicosis
,”
Chin. J. Sickness Labour-Health
10
,
129
132
(
1992
).
76.
B. G.
Frushour
and
J. L.
Koenig
, “
Raman scattering of collagen, gelatin, and elastin
,”
Biopolymers
14
,
379
(
1975
).
77.
S. J.
Webb
, “
Laser-Raman spectroscopy of living cells
,”
Phys. Rep.
60
,
201
224
(
1980
).
78.
S. J.
Webb
and
D. D.
Dobbs
, “
Inhibition of bacterial cell growth by 136gc microwaves
,”
Nature
218
,
374
375
(
1968
).
79.
X.-F.
Pang
, “
The biological effect and medical functions of infrared light
,”
J. Med. Instrum. World
9
,
36
39
(
2000
).
80.
X.-F.
Pang
, “
Thermally biological effects and its medical functions of the infrared rays absorbed by living systems
,”
Int. J. Infrared Millim. Waves
23
(
3
),
375
391
(
2002
).
81.
X.-F.
Pang
, “
Vibrational energy-spectra of the protein molecules and non-thermally biological effect of infrared lights
,”
Int. J. Infrared Millim. Waves
22
,
291
307
(
2001
).
82.
X.-F.
Pang
, “
Infrared absorption spectra of pure and magnetized water at elevated temperature
,”
Eur. Phys. Lett.
92
,
65001
(
2010
).
83.
X.-F.
Pang
, “
The conductivity properties of protons in ice and mechanism of magnetization of liquid water
,”
Eur. Phys. J. B
49
,
3
23
(
2006
).
84.
C.
Kun
,
C.
Xi
, and
Z.
Lin
,
The Application of Bio-Frequency Spectrum to Medicine
(
The peoples Medical Publishing House
,
Beijing
,
1995
), pp.
12
89
.
You do not currently have access to this content.