In situ high-pressure X-ray powder diffraction experiments on LaN up to 60.1 GPa at ambient temperature in a diamond-anvil cell revealed a reversible, first-order structural phase transition starting at ∼22.8 GPa and completed at ∼26.5 GPa from the ambient cubic phase (Fm3¯m, no. 225) to a tetragonal high-pressure phase (P4/nmm, no. 19, a = 4.1060(6), c = 3.0446(6) Å, Z = 2, wRp = 0.011), which has not been claimed in theoretical predictions. HP-LaN is isotypic with a high-pressure polymorph of BaO, which crystallizes in a tetragonally distorted CsCl-type structure. The phase transition is accompanied by a volume collapse of about 11% which corresponds well with the reported data on HP-BaO. A linear extrapolation of the c/a ratio of the tetragonally distorted CsCl-type sub-cell reaches a value c/a = 1 of cubic CsCl-type HP-LaN at 91(12) GPa. In addition, the compressibility of LaN was investigated and resulted in a bulk modulus for the ambient pressure phase of B0 = 135(3) GPa and B′ = 5.0(5) after fitting a third-order Birch-Murnaghan equation of state to the experimental p–V data. The corresponding extrapolated bulk modulus of HP-LaN is found to be B0 = 278(6) GPa and its pressure derivative B′ = 1.2(2). Both as-calculated bulk moduli are compared to the respective values obtained from an Eulerian strain versus normalized stress plot to be 143(2) GPa for ambient LaN and 293(7) GPa for HP-LaN. Compared to other binary nitrides such as δ-ZrN or δ-HfN having bulk moduli of 285 GPa and 306 GPa, respectively, the extrapolated bulk moduli of HP-LaN are in the same order of magnitude, ranking HP-LaN as a highly incompressible material.

1.
V. A.
Gubanov
,
A. L.
Ianovsky
, and
V. P.
Zhukov
, in
Electronic Structure of Refractory Carbides and Nitrides
(
Cambridge University Press
,
Cambridge
,
1994
).
2.
Y. O.
Ciftci
,
K.
Colakoglu
,
E.
Deligoz
, and
H.
Ozisik
,
Mater. Chem. Phys.
108
,
120
(
2008
).
3.
G.
Vaitheeswaran
,
V.
Kanchana
, and
M.
Rajagopalan
,
Solid State Commun.
124
,
97
(
2002
).
4.
F.
Hulliger
,
J. Magn. Magn. Mater.
8
,
183
(
1978
).
5.
K. A.
Gschneider
, Jr.
, and
I. R.
Eyring
, in
Handbook of Physics and Chemistry of Rare Earths
(
North Holland
,
Amsterdam
,
1974
), Vol. 4, p.
153
.
6.
C.
Stampfl
,
W.
Mannstadt
,
R.
Asahi
, and
A. J.
Freeman
,
Phys. Rev. B
63
,
155106
(
2001
).
7.
R.
Norman
,
H. J. F.
Jansen
,
D. D.
Koelling
, and
A. J.
Freeman
,
Solid State Commun.
52
,
739
(
1984
).
9.
D. R.
Hamann
,
X.
Wu
,
K. M.
Rabe
, and
D.
Vanderbilt
,
Phys. Rev. B
71
,
035117
(
2005
).
10.
A.
Rukmangad
,
M.
Aynyas
, and
S. P.
Sanyal
,
Indian J. Pure Appl. Phys.
47
,
114
(
2009
).http://nopr.niscair.res.in/handle/123456789/3165
11.
M.
Ghezali
,
B.
Amrani
,
Y.
Cherchab
, and
N.
Sekkal
,
Mater. Chem. Phys.
112
,
774
(
2008
).
12.
S. D.
Gupta
,
S. K.
Gupta
, and
P. K.
Jha
,
Comput. Mater. Sci.
49
,
910
(
2010
).
13.
M.
Hasegawa
,
K.
Nivwa
, and
T.
Yagi
,
Solid State Commun.
141
,
267
(
2007
).
14.
L.-G.
Liu
,
J. Appl. Phys.
42
,
3702
(
1971
).
15.
L.-G.
Liu
and
W. A.
Bassett
,
J. Geophys. Res.
77
,
4934
, doi: (
1972
).
16.
M.
Uludoğan
,
T.
Çağin
,
A.
Strachan
, and
W. A.
Goddard
III,
J. Comput.-Aided Mater. Des.
8
,
193
(
2001
).
17.
R. G.
Amorim
,
M.
Verissimo-Alves
, and
J. P.
Rino
,
Comput. Mater. Sci.
37
,
349
(
2006
).
18.
S. T.
Weir
,
Y. K.
Vohra
, and
A. L.
Ruoff
,
Phys. Rev. B: Condens. Matter
33
,
4221
(
1986
).
19.
I.
Lukačević
,
Phys. Status Solidi B
248
,
1405
(
2011
).
20.
A.
Sequeira
and
W. C.
Hamilton
,
J. Chem. Phys.
47
,
1818
(
1967
).
21.
L. W.
Schroeder
and
J. J.
Rush
,
J. Chem. Phys.
54
,
1968
(
1971
).
22.
M.
Mezouar
 et al.,
J. Synchrotron Radiat.
12
,
659
(
2005
).
23.
R.
Letoullec
,
J. P.
Pinceaux
, and
P.
Loubeyre
,
High Press. Res.
1
,
77
(
1988
).
24.
H.-K.
Mao
,
J.
Xu
, and
M. J.
Bell
,
Geophys. Res.
91
,
4673
, doi: (
1986
).
25.
A. P.
Hammersley
,
S. O.
Svensson
,
M.
Hanfland
,
A. N.
Fitch
, and
D.
Hausermann
,
High Press. Res.
14
,
235
(
1996
).
26.
A.A.
Coelho
,
TOPAS-Academic
, Version 4.1,
Coelho Software
,
Brisbane,
2007
.
27.
P.
Villars
, and
K.
Cenzual
,
Pearson’s Crystal Data—Crystal Structure Database for Inorganic Compounds
, Version 1.3d (
ASM International
,
Ohio
,
2009
/
2010
).
28.
G. S.
Pawley
,
J. Appl. Crystallogr.
14
,
357
(
1981
).
29.
G.
Oszlányi
and
A.
Sütő
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
60
,
134
(
2004
);
G.
Oszlányi
and
A.
Sütő
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
64
,
123
(
2008
);
A. A.
Coelho
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
63
,
400
(
2007
).
30.
Crystal data for HP-LaN at 60.1 GPa: formula: LaN, M = 152.92 g mol−1, space group P4/nmm (no. 129, origin1), a = 4.1060(6), c = 3.0446(6) Å, V = 51.33(1)Å3, Z = 2, radiation: λ = 0.3738 Å, T = 298(2) K, 17 reflections, 17 parameters, Rp = 0.0080, wRp = 0.011, χ2 = 1.182, Rbragg = 0.0768, background: shifted Chebychev, 12 background parameters. Further information of the crystal structure of HP-LaN at 60.1 GPa can be obtained from Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: (49) 7247–808–666; e-mail: [email protected]).
31.
J.
Bergmann
,
R.
Kleeberg
,
A.
Haase
, and
B.
Breidenstein
,
Mater. Sci. Forum
347–349
,
303
(
2000
).
32.
E.
Gregoryanz
,
A. F.
Goncharov
,
C.
Sanloup
,
M.
Somayazulu
,
H.-K.
Mao
, and
R. J.
Hemley
,
J. Chem. Phys.
126
,
184505
(
2007
).
33.
D. T.
Cromer
,
R. L.
Mills
,
D.
Schiferl
, and
L. A.
Schwalbe
,
Acta Crystallogr. B
37
,
8
(
1981
).
35.
F.
Murnaghan
,
Proc. Natl. Acad. Sci. USA
30
,
244
(
1944
).
36.
D. L.
Heinz
and
R.
Jeanloz
,
J. Appl. Phys.
55
,
885
(
1984
).
37.
Origin 6.1, v6.1052 (B232), OriginLab Corporation,
2000
.
38.
X.-J.
Chen
,
V. V.
Struzhkin
,
Z.
Wu
,
M.
Somayazulu
,
J.
Qian
,
S.
Kung
,
A. N.
Christensen
,
Y.
Zhao
,
R. E.
Cohen
,
H.-K.
Mao
, and
R. J.
Hemley
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
3198
(
2005
).
You do not currently have access to this content.