We propose a novel digital switch, the piezoelectronic transistor or PET. Based on properties of known materials, we predict that a nanometer-scale PET can operate at low voltages and relatively high speeds, exceeding the capabilities of any conventional field effect transistor (FET). Depending on the degree to which these attributes can be simultaneously achieved, the device has a broad array of potential applications in digital logic. The PET is a 3-terminal switch in which a gate voltage is applied to a piezoelectric (PE), resulting in expansion compressing a piezoresistive (PR) material comprising the channel, which then undergoes a continuous, reversible insulator-metal transition. The channel becomes conducting in response to the gate voltage. A high piezoelectric coefficient PE, e.g., a relaxor piezoelectric, leads to low voltage operation. Suitable channel materials manifesting a pressure-induced metal-insulator transition can be found amongst rare earth chalcogenides, transition metal oxides, and among others. Mechanical requirements include a high PE/PR area ratio to step up pressure, a rigid surround material to constrain the PE and PR external boundaries normal to the strain axis, and a void space to enable free motion of the component side walls. Using static mechanical modeling and dynamic electro-acoustic simulations, we optimize device structure and materials and predict performance.

1.
R.
Dennard
 et al, “
Design of ion-implanted MOSFETs with very small physical dimensions
,”
IEEE J. Solid State Circuits
9
,
256
, (
1974
);
R.
Dennard
 et al, “
Generalized scaling theory and its application to a micrometer MOSFET design
,”
IEEE Trans. Electron Devices
31
,
452
(
1984
).
2.
W.
Haensch
 et al, “
Silicon CMOS devices beyond scaling
,”
IBM J. Res. Dev.
50
,
339
(
2006
);
H.
Iwai
, “
Roadmap for 22 nm and beyond
,”
Microelectron. Eng.
86
,
1520
(
2009
).
3.
T.
Theis
and
P.
Solomon
, “
In quest of the ‘Next Switch’: Prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor
,”
Proc. IEEE
98
,
2005
(
2010
).
4.
S.
Banerjee
,
W.
Richardson
,
J.
Coleman
, and
A.
Chatterjee
, “
A new three-terminal tunnel device
,” IEEE Electron Device Lett.
8
,
347
(
1987
);
J.
Appenzeller
,
Y.-M.
Lin
,
J.
Knoch
, and
P.
Avouris
, “
Band-to-band tunneling in carbon nanotube field-effect transistors
,”
Phys. Rev. Lett.
93
,
196805
(
2004
);
[PubMed]
K. E.
Moselund
,
H.
Ghoneim
,
M. T.
Björk
,
H.
Schmid
,
S.
Karg
,
E.
Lortscher
,
W.
Riess
, and
H.
Riel
, “
Comparison of VLS grown Si NW tunnel FETs with different gate stacks
,” in
Proceedings of the 39th European Solid-State Device Research Conference ESSDERC
(
2009
), p.
448
.
5.
S.
Salahuddin
and
S.
Datta
, “
Use of negative capacitance to provide voltage amplification for low power nanoscale devices
,”
Nano Lett.
8
,
405
410
(
2008
).
6.
T.
Kopp
and
J.
Mannhart
, “
Calculation of the capacitances of conductors: Perspectives for the optimization of electronic devices
,”
J. Appl. Phys.
106
,
064504
(
2009
).
7.
J.
Son
,
S.
Rajan
,
S.
Stemmer
, and
S. J.
Allen
, “
A heterojunction modulation-doped Mott transistor
,”
Appl. Phys. Lett.
110
,
084503
(
2011
).
8.
D. M.
Newns
,
J. A.
Misewich
, and
C. C.
Tsuei
, “
Mott transition field effect transistor
,”
Appl. Phys. Lett.
73
,
780
(
1998
).
9.
S.
Datta
and
B.
Das
, “
Electronic analog of the electro-optic modulator
,”
Appl. Phys. Lett.
56
,
665
(
1990
);
K. C.
Hall
and
M. E.
Flatte
, “
Performance of a spin-based insulated gate field effect transistor
,”
Appl. Phys. Lett.
88
,
162503
(
2006
).
10.
F.
Chen
,
K.
Hei
,
D.
Markovic
,
T. -J. K.K.
Liu
,
V.
Stojanovic
, and
E.
Alon
, “
Integrated circuit design with NEM relays
,” in
Proceedings of the IEEE ICCAD
(
2008
), p.
750
757
;
T.-H.
Lee
,
S.
Bhumia
,
M.
Mehregany
, “
Electromechanical computing at 500 °C with silicon carbide
,”
Science
329
,
1316
1318
(
2010
);
[PubMed]
M.
Buettiker
,
Y.
Imry
,
R.
Landauer
, and
S.
Pinhas
, “
Generalized many-channel conductance formula with application to small rings
,”
Phys. Rev. B
31
,
6207
(
1985
).
11.
D. M.
Newns
,
G. J.
Martyna
,
B.
Elmegreen
,
X.
Liu
 et al, “
Piezo-driven non-volatile memory cell with hysteretic resistance
,” U.S. patent 7848135;
“Piezo-electronic transistor (PET) and applications,” U.S. patent application 12/495,027;
“Piezo-driven device structure and method for effective stress generation,” U.S. patent application12/632,154.
12.
D. M.
Newns
,
P.
Solomon
,
B. G.
Elmegreen
, and
G. J.
Martyna
, “4-terminal piezoelectronic transistor (PET),” patent application YOR920110425US1.
13.
D.
Shakhvorostov
,
R. A.
Nistor
,
L.
Krusin-Elbaum
,
G. J.
Martyna
,
D. M.
Newns
,
B. G.
Elmegreen
,
X.
Liu
,
Z. E.
Hughes
,
S.
Paul
,
C.
Cabral
,
S.
Raoux
,
D. B.
Shrekenhamer
,
D. N.
Basov
,
Y.
Song
, and
M. H.
Mueser
, “
Evidence for electronic gap-driven metal-semiconductor transition in phase-change materials
,”
Proc. Natl. Acad. Sci. U.S.A.
106
,
10907
(
2009
).
14.
S.-E.
Park
and
T. R.
Shrout
, “
Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals
,”
J. Appl. Phys.
82
,
15
(
1997
);
G.
Xu
 et al, “
Ferroelectric and piezoelectric properties of novel relaxor ferroelectric single crystals PMNT
,”
Chin. Sci. Bull.
45
,
491
(
2000
).
15.
S. H.
Baek
 et al, “
Giant piezoelectricity on Si for hyperactive MEMS
,”
Science
334
,
958
(
2011
);
[PubMed]
V.
Nagarajan
 et al, “
Effect of mechanical constraint on the dielectric and piezoelectric behavior of epitaxial Pb(Mg1/3Nb2/3)O3 (90%)–PbTiO3(10%) relaxor thin films
,”
Appl. Phys. Lett.
75
,
4183
(
1999
).
16.
A.
Jayaraman
 et al, “
Continuous and discontinuous semiconductor-metal transition in samarium monochalcogenides under pressure
,”
Phys. Rev. Lett.
25
,
1430
(
1970
);
A.
Jayaraman
 et al, “
Study of valence transitions in Eu-, Yb-, and Ca-substituted SmS under high pressure and some comments on other substitutions
,”
Phys. Rev. B
19
,
4154
(
1979
);
T.
Matsumura
 et al, “
Pressure induced semiconductor to metal transition in TmTe
,”
Phys. Rev. Lett.
78
,
1138
(
1997
);
D.
McWhan
and
J. P.
Remelka
, “
Metal-insulator transition in
(V1-xCrx)2O3,”
Phys. Rev. B
2
,
3734
(
1970
).
17.
R.
Zhang
,
B.
Jiang
, and
W.
Cao
, “
Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals
,”
J. Appl. Phys.
90
,
3471
(
2001
).
18.
M. J.
Highland
 et al, “
Polarization switching without domain formation at the intrinsic coercive field in ultrathin ferroelectric PbTiO3
,”
Phys. Rev. Lett.
105
,
167601
(
2010
).
19.
The simulation begins in the first 5 time units with a low resistance prefactor R̂PR,0=50, so that both PETs can adjust quickly to an initial equilibrium. After t = 5, R̂PR,0=5×104 as before. The initial equilibrium is forced during the first 10 time units by applying a voltage Vgc=VDD on the noninverting PET and a voltage drop of zero on the inverting PET. From 10 to 21 time units, all of this forcing stops and the flip flop is allowed to adjust. Figure 12 shows this adjustment in this time period with some decaying oscillations in the displacement, but no obvious oscillations in the voltages or resistances. From times 21 to 25, the voltage drop in the noninverting PET is held at Vgc=0 and the voltage drop in the inverting PET is held at VDD. Then, the flip-flop is allowed to adjust by itself again. Finally, from 36 to 40, the voltage drop in the noninverting PET is held at Vgc=VDD and the voltage drop in the inverting PET is held at Vgc=0. After this, the flip-flop adjusts internally once again. Line voltage is VDD=0.014.
20.
H. F.
Tiersten
, “
Linear piezoelectric plate vibrations; elements of the linear theory of piezoelectricity and the vibrations of piezoelectric plates
,” Springer (
1995
).
21.
M.
Kuroda
,
D. M.
Newns
,
B. G.
Elmegreen
,
X. H.
Liu
, and
G. J.
Martyna
, “
Simulation of circuits with piezelectronic transistors containing relaxor piezoelectrics
,” (in preparation).
You do not currently have access to this content.