The performance of many micro- and nanoscale devices depends on the ability to control interfacial thermal transport, which is predominantly mediated by phonons in semiconductor systems. The phonon transmissivity at an interface is therefore a quantity of interest. In this work, an empirical model, termed the thermal mismatch model, is developed to predict transmissivity at ideal interfaces between semiconductor materials, producing an excellent agreement with molecular dynamics simulations of wave packets. To investigate propagation through multilayered structures, this thermal mismatch model is then incorporated into a simulation scheme that represents wave packets as particles, showing a good agreement with a similar scheme that used molecular dynamics simulations as input [P. K. Schelling and S. R. Phillpot, J. Appl. Phys. 93, 5377 (2003)]. With these techniques validated for both single interfaces and superlattices, they are further used to identify ways to tune the transmissivity of multilayered structures. It is shown that by introducing intermediate layers of certain atomic masses, the total transmissivity can either be systematically enhanced or reduced compared to that of a single interface. Thus, this model can serve as a computationally inexpensive means of developing strategies to control phonon transmissivity in applications that may benefit from either enhancement (e.g., microelectronics) or reduction (e.g., thermoelectrics) in thermal transport.

1.
W. S.
Capinski
and
H. J.
Maris
,
Physica B
219–220
,
699
(
1996
).
2.
S.-M.
Lee
,
D. G.
Cahill
, and
R.
Venkatasubramanian
,
Appl. Phys. Lett.
70
,
2957
(
1997
).
3.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
5119
(
2004
).
4.
Y.
Ezzahri
,
S.
Grauby
,
J. M.
Rampnoux
,
H.
Michel
,
G.
Pernot
,
W.
Claeys
,
S.
Dilhaire
,
C.
Rossignol
,
G.
Zeng
, and
A.
Shakouri
,
Phys. Rev. B
75
,
195309
(
2007
).
5.
P. M.
Norris
and
P. E.
Hopkins
,
J. Heat Transfer
131
,
043207
(
2009
).
6.
R. J.
Stevens
,
L. V.
Zhigilei
, and
P. M.
Norris
,
Int. J. Heat Mass Transfer
50
,
3977
(
2007
).
7.
E. S.
Landry
,
M. I.
Hussein
, and
A. J. H.
McGaughey
,
Phys. Rev. B
77
,
184302
(
2008
).
8.
E. S.
Landry
and
A. J. H.
McGaughey
,
Phys. Rev. B
80
,
165304
(
2009
).
9.
E. S.
Landry
and
A. J. H.
McGaughey
,
Phys. Rev. B
79
,
075316
(
2009
).
10.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Appl. Phys. Lett.
80
,
2484
(
2002
).
11.
P. K.
Schelling
and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
5377
(
2003
).
12.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
J. Appl. Phys.
95
,
6082
(
2004
).
13.
Z. T.
Tian
,
B. E.
White
, Jr.
, and
Y.
Sun
,
Appl. Phys. Lett.
96
,
263113
(
2010
).
14.
N. A.
Roberts
and
D. G.
Walker
,
J. Appl. Phys.
108
,
123515
(
2010
).
15.
L.
Sun
and
J. Y.
Murthy
,
J. Heat Transfer
132
,
102403
(
2010
).
16.
V.
Narayanamurti
,
H. L.
Störmer
,
M. A.
Chin
,
A. C.
Gossard
, and
W.
Wiegmann
,
Phys. Rev. Lett.
43
,
2012
(
1979
).
17.
S. Y.
Ren
and
J. D.
Dow
,
Phys. Rev. B
25
,
3750
(
1982
).
18.
S.
Tamura
,
D. H.
Hurley
, and
J. P.
Wolfe
,
Phys. Rev. B
38
,
1427
(
1988
).
19.
D. A.
Young
and
H. J.
Maris
,
Phys. Rev. B
40
,
3685
(
1989
).
20.
G.
Chen
and M. Neagu
,
Appl. Phys. Lett.
71
,
2761
(
1997
).
21.
G.
Chen
,
Phys. Rev. B
57
,
14958
(
1998
).
22.
G.
Chen
,
J. Heat Transfer
121
,
945
(
1999
).
23.
G.
Chen
and
T.
Zeng
,
Microscale Thermophys. Eng.
5
,
71
(
2001
).
24.
H.
Zhao
and
J. B.
Freund
,
J. Appl. Phys.
97
,
024903
(
2005
).
25.
H.
Zhao
and
J. B.
Freund
,
J. Appl. Phys.
105
,
013515
(
2009
).
26.
F. X.
Alvarez
,
J.
Alvarez-Quintana
,
D.
Jou
, and
J.
Rodriguez Viejo
,
J. Appl. Phys.
107
,
084303
(
2010
).
27.
S. P.
Hepplestone
and
G. P.
Srivastava
,
Phys. Rev. B
82
,
144303
(
2010
).
28.
W. A.
Little
,
Can. J. Phys.
37
,
334
(
1959
).
29.
E. T.
Swartz
and
R. O.
Pohl
,
Rev. Mod. Phys.
61
,
605
(
1989
).
30.
T.
Beechem
,
S.
Graham
,
P. E.
Hopkins
, and
P. M.
Norris
,
Appl. Phys. Lett.
90
,
054104
(
2007
).
31.
P. E.
Hopkins
,
J. Appl. Phys.
106
,
013528
(
2009
).
32.
P. E.
Hopkins
,
J. C.
Duda
, and
P. M.
Norris
,
J. Heat Transfer
133
,
062401
(
2011
).
33.
J. C.
Duda
,
T. E.
Beechem
,
J. L.
Smoyer
,
P. M.
Norris
, and
P. E.
Hopkins
,
J. Appl. Phys.
108
,
073515
(
2010
).
34.
G. C.
Loh
,
B. K.
Tay
, and
E. H. T.
Teo
,
Appl. Phys. Lett.
97
,
121917
(
2010
).
35.
P. E.
Hopkins
,
P. M.
Norris
,
M. S.
Tsegaye
, and
A. W.
Ghosh
,
J. Appl. Phys.
106
,
063503
(
2009
).
36.
G.
Chen
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
(
Oxford University Press
,
New York, NY
,
2005
).
37.
B. A.
Auld
,
Acoustic Fields and Waves in Solids
(
John Wiley & Sons
,
New York, NY
,
1973
).
38.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
39.
J. D.
Gale
and
A. L.
Rohl
,
Mol. Simul.
29
,
291
(
2003
).
40.
A.
Skye
and
P. K.
Schelling
,
J. Appl. Phys.
103
,
113524
(
2008
).
41.
D. P.
Sellan
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
J. Appl. Phys.
108
,
113524
(
2010
).
42.
M. T.
Dove
,
Introduction to Lattice Dynamics, Cambridge Topics in Mineral Physics and Chemistry No. 4
(
Cambridge University Press
,
Cambridge, England
,
1993
).
You do not currently have access to this content.