The success of magnetic hyperthermia cancer treatments rely strongly on the magnetic properties of the nanoparticles and their intricate dependence on the externally applied field. This is particularly more so as the response departs from the low field linear regime. In this paper we introduce a new parameter, referred to as the efficiency in converting electromagnetic energy into thermal energy, which is shown to be remarkably useful in the analysis of the system response, especially when the power loss is investigated as a function of the applied field amplitude. Using numerical simulations of dynamic hysteresis, through the stochastic Landau-Lifshitz model, we map in detail the efficiency as a function of all relevant parameters of the system and compare the results with simple—yet powerful—predictions based on heuristic arguments about the relaxation time.

1.
J.
Carrey
,
B.
Mehdaoui
, and
M.
Respaud
,
J. Appl. Phys.
109
,
083921
(
2011
).
2.
M.
Veverka
,
Z.
Jirák
,
O.
Kaman
,
K.
Knížek
,
M.
Maryško
,
E.
Pollert
,
K.
Závěta
,
A.
Lančok
,
M.
Dlouhá
, and
S.
Vratislav
,
Nanotechnology
22
,
345701
(
2011
).
3.
I.
Sharifi
,
H.
Shokrollahi
, and
S.
Amiri
,
J. Magn. Magn. Mater.
324
,
903
(
2012
).
4.
A.
Pankhurst
,
N. K. T.
Thanh
,
S. K.
Jones
, and
J.
Dobson
,
J. Phys. D: Appl. Phys.
42
,
224001
(
2009
).
5.
A.
Jordan
,
R.
Scholz
,
P.
Wust
,
H.
Fahling
,
J.
Krause
,
W.
Wlodarczyk
,
B.
Sander
,
T.
Vogl
, and
R.
Feliz
,
Int. J. Hyperthermia
13
,
587
(
1997
).
6.
A.
Ito
,
H.
Honda
, and
T.
Kobayashi
,
Cancer Immunol. Immunother.
55
,
320
(
2006
).
7.
J.
Giri
,
P.
Pradhan
,
T.
Sriharsha
, and
D.
Bahadur
,
J. Appl. Phys.
97
,
10Q916
(
2005
).
8.
L.
Dennis
,
A. J.
Jackson
,
J. A.
Borchers
,
P. J.
Hoopes
,
R.
Strawbridge
,
A. R.
Foreman
,
J.
van Lierop
,
C.
Grüttner
, and
R.
Ivkov
,
Nanotechnology
20
,
395103
(
2009
).
9.
H. A.
Guedes
,
N.
Sadeghiani
,
D. L. G.
Peixoto
,
J. P.
Coelho
,
L. S.
Barbosa
,
R. B.
Azevedo
,
S.
Kückelhaus
,
M. D. F.
Da Silva
,
P. C.
Morais
, and
Z. G. M.
Lacava
,
J. Magn. Magn. Mater.
293
,
283
(
2005
).
10.
W.
Andrä
,
C. G.
D’Ambly
,
R.
Hergt
,
I.
Hilger
, and
W. A.
Kaiser
,
Int. J. Hyperthermia
24
,
467
(
2008
).
11.
S.
Eggeman
,
S. A.
Majetich
,
D.
Farrell
, and
Q. A.
Pankhurst
,
IEEE Trans. Magn.
43
,
2451
(
2007
).
12.
W.
Andrä
,
C. G.
D’Ambly
,
R.
Hergt
,
I.
Hilger
, and
W. A.
Kaiser
,
J. Magn. Magn. Mater.
194
,
197
(
1999
).
13.
E.
Sosnovik
,
M.
Nahrendorf
, and
R.
Weissleder
,
Circulation
115
,
2076
(
2007
).
14.
H.
Chung
,
A.
Hoffmann
,
K.
Guslienko
,
S. D.
Bader
,
C.
Liu
,
B.
Kay
,
L.
Makowski
, and
L.
Chen
,
J. Appl. Phys.
97
,
10R101
(
2005
).
15.
T.
Coffey
,
D. S. F.
Crothers
,
Y. P.
Kalmykov
, and
S. V.
Titov
,
Phys. Rev. B
64
,
012411
(
2001
).
16.
H.
Ebert
,
S.
Mankovsky
,
D.
Ködderitzsch
, and
P. J.
Kelly
,
Phys. Rev. Lett.
107
,
066603
(
2011
).
17.
G. T.
Landi
,
J. Appl. Phys.
111
(
4
),
043901
(
2012
).
18.
E.
Mrabti
,
S. V.
Titov
,
P.-M.
Déjardin
, and
Y. P.
Kalmykov
,
J. Appl. Phys.
110
,
023901
(
2011
).
19.
S.
Poperechny
,
Y. L.
Raikher
, and
V. I.
Stepanov
,
Phys. Rev. B
82
,
174423
(
2010
).
20.
A.
Usov
,
J. Appl. Phys.
107
,
123909
(
2010
).
21.
K.
Gilchrist
,
R.
Medal
,
W. D.
Shorey
,
R. C.
Hanselman
,
J. C.
Parrott
, and
C. B.
Taylor
,
Ann. Surg.
146
,
596
(
1957
).
22.
M.
Krishnan
,
Trans. Magn.
46
,
2523
(
2010
).
23.
C.
Stoner
and
E. P.
Wohlfarth
,
IEEE Trans. Magn.
27
,
3475
(
1991
).
24.
P.-M.
Déjardin
,
Yu P.
Kalmykov
,
B. E.
Kashevsky
,
H.
El Mrabti
,
I. S.
Poperechny
,
Y. L.
Raikher
, and
S. V.
Titov
,
J. Appl. Phys.
107
,
073914
(
2010
).
25.
G. T.
Landi
and
A. D.
Santos
,
J. Appl. Phys.
111
,
07D121
(
2012
).
26.
G. T.
Landi
,
J. Magn. Magn. Mater.
324
,
466
(
2012
).
27.
G.
Bertotti
,
Magnetism
, 1st ed. (
Academic
,
1998
), p.
558
.
28.
B.
Mehdaoui
,
J.
Carrey
,
M.
Stadler
,
A.
Cornejo
,
C.
Nayral
,
F.
Delpech
,
B.
Chaudret
, and
M.
Respaud
,
Appl. Phys. Lett.
100
,
052403
(
2012
).
29.
F.
Brown
,
Phys. Rev.
130
,
1677
(
1963
).
30.
T.
Coffey
,
Y. P.
Kalmykov
, and
J. T.
Waldron
,
Langevin Equation. With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering
, 2nd ed. (
World Scientific Publishing Co, Pte. Ltd.
,
Singapore
,
2004
), p.
678
.
31.
T.
Coffey
,
D. S. F.
Crothers
,
Y. P.
Kalmykov
,
E. S.
Massawe
, and
J. T.
Waldron
,
Phys. Rev. E
49
,
1869
(
1994
).
32.
E.
Rosensweig
,
J. Magn. Magn. Mater.
252
,
370
(
2002
).
33.
V.
Titov
,
P.-M.
Déjardin
,
H.
El Mrabti
, and
Y. P.
Kalmykov
,
Phys. Rev. B
82
,
100413
R
(
2010
).
34.
M.
Morgan
and
R. H.
Victora
,
Appl. Phys. Lett.
97
,
093705
(
2010
).
35.
E.
Bordelon
,
C.
Cornejo
,
C.
Gruttner
,
F.
Westphal
,
T. L.
DeWeese
, and
R.
Ivkov
,
J. Appl. Phys.
109
,
124904
(
2011
).
36.
K. P.
Scaife
,
Permittivity
(
The English Universities Press
,
London
,
1971
).
37.
F.
Bakuzis
and
P. C.
Morais
,
J. Magn. Mag. Mater.
226–230
,
1924
(
2001
).
38.
F.
Bakuzis
,
P. C.
Morais
, and
F.
Pelegrini
,
J. Appl. Phys.
85
,
7480
(
1999
).
39.
F.
Bakuzis
,
P. C.
Morais
, and
F. A.
Tourinho
,
J. Mag. Reson. Ser. A
122
,
100
(
1996
).
40.
L.
García-Palacios
and
F. J.
Lázaro
,
Phys. Rev. B
58
,
14937
(
1998
).
41.
M.
Johannsen
,
B.
Thiesen
,
P.
Wust
, and
A.
Jordan
,
Int. J. Hyperthermia
26
,
790
(
2010
).
42.
L.
Castro
,
G. R. R.
Gonçalves
,
K. S.
Neto
,
P. C.
Morais
,
A. F.
Bakuzis
, and
R.
Miotto
,
Phys. Rev. E
78
,
061507
(
2008
).
43.
A. M.
Brabers
,
Phys. Rev. Lett.
68
,
3113
(
1992
).
44.
K.
Yosida
and
M.
Tachiki
,
Prog. Theor. Phys.
17
,
331
(
1957
).
45.
R.
Cintra
,
F. S.
Ferreira
,
J. L.
Santos
, Jr.
,
J. C.
Campello
,
L. M.
Socolovsky
,
E. M.
Lima
, and
A. F.
Bakuzis
,
Nanotechnology
20
,
045103
(
2009
).
46.
T. A.
Eloi
,
J. L.
Santos
, Jr.
,
P. C.
Morais
, and
A. F.
Bakuzis
,
Phys. Rev. E
82
,
021407
(
2010
).
47.
C.
Hindmarsh
,
P. N.
Brown
,
K. E.
Grant
,
S. L.
Lee
,
R.
Serban
,
D. E.
Shumaker
, and
C. S.
Woodward
,
Trans. Math. Software
31
,
363
(
2005
).
48.
E.
Arnoldi
,
J. Appl. Math.
9
,
17
(
1951
).
You do not currently have access to this content.