To predict and optimize luminescence efficiency of rare-earth ion doped (RE) nanophosphors, a relationship between the RE-concentration and the luminescent parameters is often obtained by Judd-Ofelt analysis, where the quality factor (χ=Ω4/Ω6) depends on the Er interactions with other RE elements in the second nearest neighboring shell. In this work, a detailed analysis of the local bonding environment by extended x-ray absorption fine structure (EXAFS) analyses is shown as effective as the Judd-Ofelt analysis to quantify the Er↔RE interaction in the second nearest neighboring shell (ρN=IRErRE2/IRErRE1). As the physical basis of ρN is consistent to that of χ, the EXAFS analysis becomes a viable alternative to replace Judd-Ofelt analysis to predict the optimum dopant concentration. This approach was corroborated based on analysis of Er3+:Y2O3 and core-shell Er3+:Y2O3|Y2O3 (5 nm shell) nanoparticles (NPs), with Er3+ concentrations up to 20 mol %. The ρN ratio from EXAFS analysis was shown to strongly correlate to the lifetimes extracted from the Judd-Ofelt analysis, both predicting the optimal dopant concentrations to be at 5 mol % and 2 mol % for the Er3+:Y2O3 and core-shell NPs, respectively. This confirms that EXAFS analysis can be used as a more time efficient method to achieve the same outcome typically obtained by Judd-Ofelt analysis, enabling the optimization of the luminescent lifetimes of RE doped nano-phosphors.

1.
G.
Blasse
and
B. C.
Grabmaier
,
Luminescent Materials
(
Springer-Verlag
,
Berlin, New York
,
1994
),
p
232
.
2.
F.
Zhang
 et al., “
Fabrication of Ag@SiO2@Y2O3:Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles
,”
J. Am. Chem. Soc.
132
(
9
),
2850
(
2010
).
3.
D.
Solis
 et al., “
Role of Yb3+ and Er3+ concentration on the tunability of green-yellow-red upconversion emission of codoped ZrO2:Yb3+–Er3+ nanocrystals
,”
J. Appl. Phys.
108
(
2
),
023103
(
2010
).
4.
A. M.
Tkachuk
 et al., “
Upconversion processes in Er3+:KPb2Cl5 laser crystals
,”
J. Lumin.
125
(
1–2
),
271
(
2007
).
5.
T. T.
Van
 et al., “
Nanostructure and temperature-dependent photoluminescence of Er-doped Y2O3 thin films for micro-optoelectronic integrated circuits
,”
J. Appl. Phys.
100
(
7
),
073512
(
2006
).
6.
Y.
Mao
 et al., “
Luminescence of nanocrystalline erbium-doped yttria
,”
Adv. Funct. Mater.
19
(
5
),
748
(
2009
).
7.
T. T.
Van
and
J. P.
Chang
, “
Controlled erbium incorporation and photoluminescence of Er-doped Y2O3
,”
Appl. Phys. Lett.
87
(
1
),
011907
(
2005
).
8.
S.
Chandra
 et al., “
Synthesis, morphology, and optical characterization of nanocrystalline Er3+:Y2O3
,”
J. Phys. Chem. C
114
(
2
),
874
(
2009
).
9.
E.
Hao
 et al., “
Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles
,”
Chem. Mater.
11
(
11
),
3096
(
1999
).
10.
N.
Yaiphaba
 et al., “
Luminescence, lifetime, and quantum yield studies of redispersible Eu3+-doped GdPO4 crystalline nanoneedles: Core-shell and concentration effects
,”
J. Appl. Phys.
107
(
3
),
034301
(
2010
).
11.
J. A.
Dorman
 et al., “
Elucidating the effects of a rare-earth oxide shell on the luminescence dynamics of Er3+:Y2O3 nanoparticles
,”
J. Phys. Chem. C
(accepted).
12.
B. R.
Judd
, “
Optical absorption intensities of rare-earth ions
,”
Phys. Rev.
127
(
3
),
750
(
1962
).
13.
G. S.
Ofelt
, “
Intensities of crystal spectra of rare-earth ions
,”
J. Chem. Phys.
37
(
3
),
511
(
1962
).
14.
W.
Luo
 et al., “
Determination of Judd-Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials
,”
Phys. Chem. Chem. Phys.
12
(
13
),
3276
(
2010
).
15.
G.
Ehrhart
 et al., “
Effects of rare-earth concentration and heat-treatment on the structural and luminescence properties of europium-doped zirconia sol-gel planar waveguides
,”
Opt. Mater.
29
(
12
),
1723
(
2007
).
16.
K. L.
Nash
 et al., “
Absorption intensities, emission cross sections, and crystal field analysis of selected intermanifold transitions of Ho3+ in Ho3+:Y2O3 nanocrystals
,”
J. Appl. Phys.
106
(
6
),
063117
(
2009
).
17.
B. L.
Kirsch
 et al., “
Probing the effects of interfacial chemistry on the kinetics of phase transitions in amorphous and tetragonal zirconia nanocrystals
,”
Langmuir
20
(
25
),
11247
(
2004
).
18.
Y.
Mao
 et al., “
Correlation between luminescent properties and local coordination environment for erbium dopant in yttrium oxide nanotubes
,”
J. Appl. Phys.
103
(
9
),
094316
(
2008
).
19.
A.
Michailovski
 et al., “
Studying the solvothermal formation of MoO3 fibers by complementary in situ EXAFS/EDXRD techniques
,”
Angew. Chem., Int. Ed.
44
(
35
),
5643
(
2005
).
20.
J. A.
Dorman
 et al., “
In situ x-ray diffraction and absorption studies of the growth and phase transformation of yttrium hydroxide nanotubes to their oxide counterparts
,”
J. Phys. Chem. C
114
(
41
),
17422
(
2010
).
21.
T.
Van
,
T. J. R.
Bargar
, and
J. P.
Chang
, “
Er coordination in Y2O3 thin films studied by extended x-ray absorption fine structure
,”
J. Appl. Phys.
100
(
2
),
023115
(
2006
).
22.
P.
Ghigna
,
A.
Speghini
, and
M.
Bettinelli
, “
Local chemical environment of Pr3+ substitutional defects in bulk and nanocrystalline Gd3Ga5O12: A joint EXAFS and luminescence study
,”
J. Phys. Chem. C
111
(
33
),
12236
(
2007
).
23.
A. A.
Kaminskii
 et al., “
New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced-matrix elements |α[SL]JU(t)α'[S'L']J'|2 for Er3+ ions
,”
Phys. Status Solidi A
151
(
1
),
231
(
1995
).
24.
A. A.
Kaminskii
, “
Laser crystals and ceramics: Recent advances
,”
Laser Photonics Rev.
1
(
2
),
93
(
2007
).
25.
D. L.
Dexter
and
J. H.
Schulman
, “
Theory of concentration quenching in inorganic phosphors
,”
J. Chem. Phys.
22
(
6
),
1063
(
1954
).
26.
D. L.
Dexter
, “
A theory of sensitized luminescence in solids
,”
J. Chem. Phys.
21
(
5
),
836
(
1953
).
27.
T.
Förster
, “
Zwischenmolekulare energiewanderung und fluoreszenz
,”
Ann. Phys.
437
(
1–2
),
55
(
1948
).
28.
E. N.
Maslen
,
V. A.
Streltsov
, and
N.
Ishizawa
,
A synchrotron x-ray study of the electron density in C-type rare earth oxides
,”
Acta Crystallogr. Sect. B: Struct. Sci.
52
(
3
),
414
(
1996
).
29.
R. M.
Moon
 et al., “
Magnetic structures of Er2O3 and Yb2O3
,”
Phys. Rev.
176
(
2
),
722
(
1968
).
30.
H.
Takebe
,
Y.
Nageno
, and
K.
Morinaga
, “
Effect of network modifier on spontaneous emission probabilities of Er3+ in oxide glasses
,”
J. Am. Ceram. Soc.
77
(
8
),
2132
(
1994
).
31.
S. Y.
Kuo
 et al., “
Dependence of luminescence efficiency on dopant concentration and sintering temperature in the erbium-doped Ba0.7Sr0.3TiO3 thin films
,”
J. Appl. Phys.
92
(
4
),
1868
(
2002
).
32.
M. C.
Pujol
 et al., “
Crystalline structure and optical spectroscopy of Er3+-doped KGd(WO4)(2) single crystals
,”
Appl. Phys. B
68
(
2
),
187
(
1999
).
You do not currently have access to this content.