The microscopic model of the Si(001) crystal surface was investigated by first principles calculations to clarify the behavior of intrinsic point defects during crystal growth and thermal annealing. A c(4 × 2) structure model was used to describe the crystal surface in contact with vacuum. The calculations show that a vacancy in the first or second atomic layer has about a 2.0 eV lower formation energy than deeper inside the bulk and that there is a diffusion barrier to penetrate into the deeper crystal region. Furthermore, a vacancy in the first or second atomic layer is stabilized by the fact that Si atoms with dangling bonds attract each other due to ionic and/or covalent bonding. There is, however, no barrier for the diffusion of a vacancy from the first layer to the second one. The tetrahedral (T)-site and dumbbell (DB)-site, in which a Si atom is captured from the surface and forms a self-interstitial, are found as stable sites near the third atomic layer. The T-site has a barrier of 0.48 eV, whereas the DB-site has no barrier for the interstitial to penetrate into the crystal from the vacuum. Self-interstitials in both the T- and DB-sites in the third atomic layer have a 1.7 to 2.8 eV lower formation energy than deeper in the bulk and there is a diffusion barrier to penetrate into the deeper crystal region; 32 sites were found as stable sub-surface vacancy positions, whereas only 8 sites were found as stable self-interstitial positions. Using these results, a mechanism for the elimination of crystal-originated pits by thermal annealing is proposed. It is shown that the microscopic model is consistent with and allows to fine-tune existing macroscopic models that are used to calculate the intrinsic point defects behavior during crystal growth from a melt.

1.
V. V.
Voronkov
,
J. Cryst. Growth
59
,
625
(
1982
).
2.
S.
Sadamitsu
,
S.
Umeno
,
Y.
Koike
,
M.
Hourai
,
S.
Sumita
, and
T.
Shigematsu
,
Jpn. J. Appl. Phys.
32
,
3675
(
1993
).
3.
H.
Nishikawa
,
T.
Tanaka
,
Y.
Yanase
,
M.
Hourai
,
M.
Sano
, and
H.
Tsuya
,
Jpn. J. Appl. Phys.
36
,
6595
(
1997
).
4.
T.
Sinno
,
R. A.
Brown
,
W.
von Ammon
, and
E.
Dornberger
,
J. Electrochem. Soc.
145
,
302
(
1998
).
5.
T.
Saishoji
,
K.
Nakamura
,
H.
Nakajima
,
T.
Yokoyama
,
F.
Ishikawa
, and
J.
Tomioka
,
High Purity Silicon V
, edited by
V. C. L.
Claeys
,
P.
Rai-Choudhury
,
M.
Watanabe
,
P.
Stalhofer
, and
H. J.
Dawson
(
Electrochemical Society
,
Pennington, NJ
,
1998
), p.
28
.
6.
M.
Hourai
,
H.
Nishikawa
,
T.
Tanaka
,
S.
Umeno
,
E.
Asayama
,
T.
Nomachi
, and
G.
Kelly
,
Semiconductor Silicon
, edited by
H. R.
Huff
,
U.
Gösele
, and
H.
Tsuya
(
Electrochemical Society
,
Pennington, NJ
,
1998
), p.
453
.
7.
J. G.
Park
,
G. S.
Lee
,
J. M.
Park
,
S. M.
Chon
, and
H. K.
Chung
, Silicon Wafer Symposium (Portland, OR,
1998
), p.
E
1
.
8.
M.
Akatsuka
,
M.
Okui
,
S.
Umeno
, and
K.
Sueoka
,
J. Electrochem. Soc.
150
,
G587
G590
(
2003
).
9.
Y.
Matsushita
,
M.
Sanada
,
A.
Tanabe
,
R.
Takeda
,
N.
Shimoi
, and
N.
Kobayashi
,
Semiconductor Silicon
, edited by
H. R.
Huff
,
U.
Gösele
, and
H.
Tsuya
(
Electrochemical Society
,
Pennington, NJ
,
1998
), p.
683
.
10.
F.
Dupret
,
P.
Nicode`me
,
Y.
Ryckmans
,
P.
Wouters
, and
M. J.
Crochet
,
Int. J. Heat Mass Transfer
33
,
1849
(
1990
).
11.
See http://www.femagsoft.com/ for more information on the FEMAG software and examples of application.
12.
N.
Adachi
,
T.
Hisatomi
,
M.
Sano
, and
H.
Tsuya
,
Semiconductor Silicon
, edited by
H.R.
Huff
,
U.
Gösele
, and
H.
Tsuya
(
Electrochemical Society
,
Pennington, NJ
,
1998
), p.
698
.
13.
K.
Nakamura
,
T.
Saishoji
,
J.
Tomioka
, and
T.
Katayama
,
Defects in Silicon III
, edited by
T.
Abe
,
W. M.
Bullis
,
S.
Kobayashi
,
W.
Lin
, and
P.
Wagner
(
Electrochemical Society
,
Pennington, NJ
,
1999
), p.
468
.
14.
E.
Kamiyama
and
K.
Sueoka
,
J. Electrochem. Soc.
157
,
H323
(
2010
).
15.
T.
Sinno
,
Semiconductor Silicon
, edited by
H. R.
Huff
,
L.
Fabry
, and
S.
Kishino
(
Electrochemical Society
,
Pennington, NJ
,
2002
), p.
PV2002
2
, 212.
16.
K.
Nakamura
,
T.
Saishoji
,
T.
Kubota
,
T.
Iida
,
Y.
Shimanuki
,
T.
Kotooka
, and
J.
Tomioka
,
J. Cryst. Growth
180
,
61
(
1997
).
17.
T.
Abe
and
T.
Takahashi
,
J. Cryst. Growth
334
,
16
(
2011
).
18.
J.
Vanhellemont
,
J. Appl. Phys.
110
,
063519
(
2011
);
J.
Vanhellemont
,
J. Appl. Phys.
110
,
129903
(
2011
), and references therein.
19.
T.
Motooka
,
K.
Nishihira
,
R.
Oshima
,
H.
Nishizawa
, and
F.
Hori
,
Phys. Rev. B
65
,
081304
(
2002
).
20.
R. M.
Tromp
,
R. J.
Hamers
, and
J. E.
Demuth
,
Phys. Rev. Lett.
55
,
1303
(
1985
).
21.
E.
Kamiyama
and
K.
Sueoka
,
J. Appl. Phys.
111
,
013521
(
2012
).
22.
R. J.
Hamers
,
R. M.
Tromp
, and
J. E.
Demuth
,
Phys. Rev. B
34
,
5343
(
1986
).
23.
24.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
25.
W.
Kohn
and
L.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
26.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
27.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Norskov
,
Phys. Rev. B
59
,
7413
(
1999
).
28.
The CASTEP code is available from Accelrys Software Inc.
29.
G.
Kresse
and
J.
Furthmuller
,
Phys. Rev. B
54
,
11169
(
1996
).
30.
T.
Fischer
and
J.
Almlof
,
J. Phys. Chem.
96
,
9768
(
1992
).
31.
H.
Monkhorst
and
J.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
32.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
1846
(
1955
).
33.
N.
Govind
,
M.
Petersen
,
G.
Fitzgerald
,
D.
King-Smith
, and
J.
Andzelm
,
Comput. Mater. Sci.
28
,
250
(
2003
).
You do not currently have access to this content.