FePt–SiNx–C films on TiN/CrRu/glass substrate with large coercivity, (001) texture, and small isolated grains were obtained by co-sputtering FePt, Si3N4, and C targets at 380 °C. It was found that when C was doped into the FePt–SiNx films, the out-of-plane coercivity increased while the small in-plane coercivity remained unchanged. Grain size decreased and grain size distribution became more uniform with increasing the C doping concentration. The x-ray photoelectron spectroscopy (XPS) depth profile showed a uniform depth distribution of Si in the FePt layer. The Si2p XPS spectrum implied the existence of Fe–Si bonds, indicating that SiNx was located at the FePt grain boundaries and was stable against diffusion to the surface, thus favoring grain isolation. Well-isolated FePt (001) granular films with coercivity higher than 21.5 kOe and an average grain size of 5.6 nm were obtained by doping 40 vol. % of SiNx and 20 vol. % of C.

1.
T.
Suzuki
,
H.
Muraoka
,
Y.
Nakamura
, and
K.
Ouchi
,
IEEE Trans. Magn.
39
,
691
(
2003
).
2.
J. S.
Chen
,
Y. Z.
Zhou
,
B. C.
Lim
,
T. J.
Zhou
,
J.
Zhang
, and
G. M.
Chow
,
IEEE Trans. Magn.
41
,
3196
(
2005
).
3.
Y. K.
Takahashi
,
T.
Koyama
,
M.
Ohnuma
,
T.
Ohkubo
, and
K.
Hono
,
J. Appl. Phys.
95
,
2690
(
2007
).
4.
J. S.
Chen
,
B. C.
Lim
,
J. F.
Hu
,
B.
Liu
,
G. M.
Chow
, and
G.
Ju
,
Appl. Phys. Lett.
91
,
132506
(
2007
).
5.
C. L.
Platt
,
K. W.
Wierman
,
E. B.
Svedberg
,
R. V. D.
Veerdonk
,
J. K.
Howard
,
A. G.
Roy
, and
D. E.
Laughlin
,
J. Appl. Phys.
92
,
6104
(
2002
).
6.
H. H.
Li
,
K. F.
Dong
,
Y. G.
Peng
,
G.
Ju
,
G. M.
Chow
, and
J. S.
Chen
,
J. Appl. Phys.
110
,
043911
(
2011
).
7.
N.
Honda
,
K.
Ouchi
, and
S.
Iwasaki
,
IEEE Trans. Magn.
38
,
1615
(
2002
).
You do not currently have access to this content.