To develop a III/V wide bandgap collector concept for future SiGe heterobipolar transistor performance increase, a heterostructure growth study of GaP on pseudomorphic 4° off-oriented Si0.8Ge0.2/Si(001) substrates was performed. For pseudomorphic GaP/Si0.8Ge0.2/Si(001) heterostructure growth, critical thickness of GaP on Si and maximum thermal budget for GaP deposition were evaluated. A detailed structure and defect characterization study by x-ray diffraction, atomic force microscopy, and transmission electron microscopy is reported on single crystalline 170 nm GaP/20 nm Si0.8Ge0.2/Si(001). Results show that 20 nm Si0.8Ge0.2/Si(001) can be overgrown by 170 nm GaP without affecting the pseudomorphism of the Si0.8Ge0.2/Si(001) layer. The GaP layer grows however partially relaxed, mainly due to defect nucleation at the GaP/Si0.8Ge0.2 interface during initial island coalescence. The achievement of 2D GaP growth conditions on Si0.8Ge0.2/Si(001) systems is thus a crucial step for achieving fully pseudomorphic heterostructures. Anti-phase domain-free GaP growth is observed for film thicknesses beyond 70 nm.

1.
J. D.
Cressler
,
The Silicon Heterostructure Handbook
(
CRC Press
,
New York City, New York
,
2005
).
2.
G. S.
May
and
S. M.
Sze
,
Fundamentals of Semiconductor Fabrication
(
Wiley
,
Hoboken, New Jersey
,
2004
).
3.
B.
Heinemann
,
R.
Barth
,
D.
Bolze
,
J.
Drews
,
G. G.
Fischer
,
A.
Fox
,
O.
Fursenko
,
T.
Grabolla
,
U.
Haak
,
D.
Knoll
,
R.
Kurps
,
M.
Lisker
,
S.
Marschmeyer
,
H.
Rücker
,
D.
Schmidt
,
J.
Schmidt
,
M. A.
Schubert
,
C.
Wipf
,
D.
Wolansky
,
Y.
Yamamoto
, and
B.
Tillack
,
Tech. Dig. – Int. Electron Devices Meet.
p.
688
(
2010
).
4.
E. O.
Johnson
, “
Physical limitations on frequency and power parameters of transistors
,”
RCA Rev.
26
,
163
(
1965
).
5.
T.
Kraemer
,
M.
Rudolph
,
F. J.
Schmueckle
,
J.
Wuerfl
, and
G.
Traenkle
,
IEEE Trans. Electron Devices
56
(
9
),
1897
(
2009
).
6.
S. F.
Fang
,
K.
Adomi
,
S.
Iyer
,
H.
Mordoç
,
C.
Choi
,
H.
Zabel
, and
N.
Otsuka
,
J. Appl. Phys.
68
(
7
),
R31
(
1990
).
7.
M.
Levinshtein
,
S.
Rumyantsev
, and
M.
Shur
,
Handbook Series on Semiconductor Parameters
(
World Scientific
,
Singapore/New Jersey/London/Hong Kong
,
1996
).
8.
M. V.
Fischetti
,
IEEE Trans. Electron Devices
38
(
3
),
634
(
1991
).
9.
E. A.
Fitzgerald
,
Y.-H.
Xie
,
D.
Monroe
,
P. J.
Silverman
,
J. M.
Kuo
,
A. R.
Kortan
,
F. A.
Thiel
, and
B. E.
Weir
,
J. Vac. Sci. Technol. B
10
(
4
),
1807
(
1992
).
10.
H.
Döscher
,
B.
Kunert
,
A.
Beyer
,
O.
Supplie
,
K.
Volz
,
W.
Stolz
, and
T.
Hannappel
,
J. Vac. Sci. Technol. B
28
(
4
),
C5H1
(
2010
).
11.
T. J.
Grassman
,
M. R.
Brenner
,
S.
Rajagopalan
,
R.
Unocic
,
R.
Rehoff
,
M.
Mills
,
H.
Fraser
, and
S. A.
Ringel
,
Appl. Phys. Lett.
94
,
232106
(
2009
).
12.
H.
Döscher
and
T.
Hannappel
,
J. Appl. Phys.
107
(
12
),
123523
(
2010
).
13.
W. T.
Masselink
,
T.
Henderson
,
J.
Klem
,
R.
Fischer
,
P.
Pearah
,
M.
Hafich
,
P. D.
Wang
,
G. Y.
Robinson
, and
H.
Morkoç
,
Appl. Phys. Lett.
45
(
12
),
1309
(
1984
).
14.
T.
Soga
,
T.
Jimbo
, and
M.
Umeno
,
J. Cryst. Growth
163
,
165
(
1996
).
15.
Y.
Takagi
,
H.
Yonezu
,
K.
Samonji
,
T.
Tsuji
, and
N.
Ohshima
,
J. Cryst. Growth
187
,
42
(
1998
).
16.
M.
Sadeghi
and
S.
Wang
,
J. Cryst. Growth
227–228
,
279
(
2001
)
17.
S. L.
Wright
,
H.
Kroemer
, and
M.
Inada
,
J. Appl. Phys.
55
(
5
),
2916
(
1983
).
18.
A.
Létoublon
,
W.
Guo
,
C.
Cornet
,
A.
Boulle
,
M.
Véron
,
A.
Bondi
,
O.
Durand
,
T.
Rohel
,
O.
Dehaese
,
N.
Chevalier
,
N.
Bertru
, and
A.
LeCorre
,
J. Cryst. Growth
323
,
409
(
2011
).
19.
K.
Yamane
,
T.
Kobayashi
,
Y.
Furukawa
,
H.
Okada
,
H.
Yonezu
, and
A.
Wakahara
,
J. Cryst. Growth
311
,
794
(
2009
).
20.
X.
Yu
,
P. S.
Kuo
,
K.
Mai
,
O.
Levi
,
M. M.
Fejer
, and
J. S.
Harris
 Jr.
,
J. Vac. Sci. Technol. B
22
(
3
),
1450
(
2010
).
21.
W. G.
Bi
,
X. B.
Mei
, and
C. W.
Tu
,
J. Cryst. Growth
164
,
256
(
1996
).
22.
V.
Narayanan
,
S.
Mahajan
,
K. J.
Bachmann
,
V.
Woods
, and
N.
Dietz
,
Acta Mater.
50
,
1275
(
2002
).
23.
A.
Beyer
,
I.
Németh
,
S.
Liebich
,
J.
Ohlmann
,
W.
Stolz
, and
K.
Volz
,
J. Appl. Phys.
109
,
083529
(
2011
).
24.
K.
Volz
,
A.
Beyer
,
W.
Witte
,
J.
Ohlmann
,
I.
Németh
,
B.
Kunert
, and
W.
Stolz
,
J. Cryst. Growth
315
,
37
(
2011
).
25.
26.
A.
Fischer
,
H.
Kühne
,
M.
Eichler
,
F.
Holländer
, and
H.
Richter
,
Phys. Rev. B
54
(
12
),
8761
(
1996
).
27.
J. W.
Matthews
and
A. E.
Blakeslee
,
J. Cryst. Growth
27
,
118
(
1974
).
28.
T.
Soga
,
T.
Jimbo
, and
M.
Umeno
,
Appl. Phys. Lett.
63
(
18
),
2543
(
1993
).
29.
Y.
Takagi
,
Y.
Furukawa
,
A.
Wakahara
, and
H.
Kan
,
J. Appl. Phys.
107
,
063506
(
2010
).
30.
W. G.
Bi
and
C. W.
Tu
,
Appl. Phys. Lett.
49
(
24
),
3710
(
1996
).
31.
K.
Momose
,
H.
Yonezu
,
Y.
Fujimoto
,
K.
Ojima
,
Y.
Furukawa
,
A.
Utsumi
, and
K.
Aiki
,
Jpn. J. Appl. Phys.
41
(
12
),
1
(
2002
).
32.
G.
Bhagavannarayana
and
P.
Zaumseil
,
J. Appl. Phys.
82
,
1172
(
1997
).
33.
V. M.
Kaganer
,
R.
Koehler
,
M.
Schmidbauer
, and
R.
Opitz
,
Phys. Rev. B
55
(
3
),
1793
(
1996
).
34.
S. N. G.
Chu
,
A. T.
Macrander
,
K. E.
Strege
, and
W. D.
Johnston
, Jr.
,
J. Appl. Phys.
57
(
2
),
249
(
1985
).
35.
C. R.
Bayliss
and
D. L.
Kirk
,
J. Phys. D: Appl. Phys.
9
,
233
(
1975
).
36.
T.
Ogawa
,
H.
Morota
, and
S.
Adachi
,
J. Phys. D: Appl. Phys.
40
,
4603
(
2007
).
37.
P.
Zaumseil
and
T.
Schroeder
,
J. Phys. D: Appl. Phys.
44
,
055403
(
2011
).
38.
F.
Ishizuka
and
T.
Itoh
,
J. Appl. Phys.
66
(
7
),
3007
(
1989
).
39.
T.
Schroeder
,
A.
Giussani
,
J.
Dabrowski
,
P.
Zaumseil
,
H.-J.
Müssig
,
O.
Seifath
, and
P.
Storck
,
Phys. Status Solidi C
6
(
3
),
653
(
2009
).
40.
P.
Zaumseil
and
T.
Schroeder
,
J. Appl. Phys.
104
,
023532
(
2008
).
41.
G.
Wang
,
E.
Rosseel
,
R.
Loo
,
P.
Favia
,
H.
Bender
,
M.
Caymax
,
M. M.
Heyns
, and
W.
Vandervorst
,
Appl. Phys. Lett.
96
(
11
),
111903
(
2010
).
42.
F.
Ernst
and
P.
Pirouz
,
J. Appl. Phys.
64
,
4526
(
1988
).
43.
I. V.
Markov
,
Crystal Growth for Beginners
(
World Scientific Publishing Co.
,
Singapore
,
2003
).
You do not currently have access to this content.