Structural behavior and equation of state (EOS) of atomic and molecular crystal phases of dense hydrogen at pressures up to 3.5 TPa are systematically investigated with density functional theory. The results indicate that the Vinet EOS model that fitted to low-pressure experimental data overestimates the compressibility of dense hydrogen drastically when beyond 500 GPa. Metastable multi-atomic molecular phases with weak covalent bonds are observed. When compressed beyond about 2.8 TPa, these exotic low-coordinated phases become competitive with the ground state and other high-symmetry atomic phases. Using nudged elastic band method, the transition path and the associated energy barrier between these high-pressure phases are evaluated. In particular for the case of dissociation of diatomic molecular phase into the atomic metallic Cs-IV phase, the existent barrier might raise the transition pressure about 200 GPa at low temperatures. Plenty of flat and broad basins on the energy surface of dense hydrogen have been discovered, which should take a major responsibility for the highly anharmonic zero point vibrations of the lattice, as well as the quantum structure fluctuations in some extreme cases. At zero pressure, our analysis demonstrates that all of these atomic phases of dense hydrogen known so far are unquenchable.

2.
T.
Guillot
,
Planet. Space Sci.
47
,
1183
(
1999
).
3.
S. A.
Bonev
,
E.
Schwegler
,
T.
Ogitsu
, and
G.
Galli
,
Nature
431
,
669
(
2004
).
4.
S.
Deemyad
and
I. F.
Silvera
,
Phys. Rev. Lett.
100
,
155701
(
2008
).
5.
M. A.
Morales
,
C.
Pierleoni
,
E.
Schwegler
, and
D. M.
Ceperley
,
Proc. Natl. Acad. Sci. U.S.A.
107
,
12799
(
2010
).
6.
W.
Lorenzen
,
B.
Holst
, and
R.
Redmer
,
Phys. Rev. B
82
,
195107
(
2010
).
7.
H. K.
Mao
and
R. J.
Hemley
,
Rev. Mod. Phys.
66
,
671
(
1994
) (and references therein).
8.
J. H.
Eggert
,
F.
Moshary
,
W. J.
Evans
,
H. E.
Lorenzana
,
K. A.
Goettel
,
I. F.
Silvera
, and
W. C.
Moss
,
Phys. Rev. Lett.
66
,
193
(
1991
).
9.
C.
Narayana
,
H.
Luo
,
J.
Orloff
, and
A. L.
Ruoff
,
Nature
393
,
46
(
1998
).
10.
P.
Loubeyre
,
F.
Occelli
, and
R.
Le Toullec
,
Nature
416
,
613
(
2002
).
11.
U.
Bafile
,
F.
Becherini
,
D.
Colognesi
, and
M.
Zoppi
,
Phys. Rev. B
77
,
224302
(
2008
).
12.
E.
Wigner
and
H. B.
Huntington
,
J. Chem. Phys.
3
,
764
(
1935
).
13.
C.
Friedli
and
N. W.
Ashcroft
,
Phys. Rev. B
16
,
662
(
1977
).
14.
T. W.
Barbee
 III
,
A.
Garcia
,
M. L.
Cohen
, and
J. L.
Martins
,
Phys. Rev. Lett.
62
,
1150
(
1989
).
15.
H.
Chacham
and
S. G.
Louie
,
Phys. Rev. Lett.
66
,
64
(
1991
).
16.
K. A.
Johnson
and
N. W.
Ashcroft
,
Nature
403
,
632
(
2000
).
17.
C. J.
Pickard
and
R. J.
Needs
,
Nature Phys.
3
,
473
(
2007
).
18.
J. S.
Tse
,
D. D.
Klug
,
Y. S.
Yao
,
Y. L.
Page
, and
J. R.
Rodgers
,
Solid State Commun.
145
,
5
(
2008
).
19.
J. M.
McMahon
and
D. M.
Ceperley
,
Phys. Rev. Lett.
106
,
165302
(
2011
).
20.
21.
W. J.
Carr
, Jr.
,
Phys. Rev.
122
,
1437
(
1961
).
22.
M. D.
Jones
and
D. M.
Ceperley
,
Phys. Rev. Lett.
76
,
4572
(
1996
).
23.
H. Y.
Geng
,
Y.
Chen
,
Y.
Kaneta
, and
M.
Kinoshita
,
Phys. Rev. B
75
,
054111
(
2007
).
24.
P.
Loubeyre
,
R.
LeToullec
,
D.
Hausermann
,
M.
Hanfland
,
R. J.
Hemley
,
H. K.
Mao
, and
L. W.
Finger
,
Nature
383
,
702
(
1996
).
25.
C. J.
Pickard
and
R. J.
Needs
,
Phys. Rev. Lett.
97
,
045504
(
2006
).
26.
B.
Rousseau
,
Y.
Xie
,
Y.
Ma
, and
A.
Bergara
,
Eur. Phys. J. B
81
,
1
(
2011
).
27.
J.
Lv
,
Y.
Wang
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. Lett.
106
,
015503
(
2011
).
28.
Y.
Yao
,
J. S.
Tse
, and
D. D.
Klug
,
Phys. Rev. Lett.
102
,
115503
(
2009
).
29.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
,
Phys. Rev. B
82
,
094116
(
2010
).
30.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
31.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
32.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
33.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
34.
M. I.
McMahon
and
R. J.
Nelmes
,
Chem. Soc. Rev.
35
,
943
(
2006
).
35.
G.
Mills
,
H.
Jonsson
, and
G. K.
Schenter
,
Surf. Sci.
324
,
305
(
1995
).
36.
D.
Alfè
,
Comp. Phys. Comm.
180
,
2622
(
2009
).
37.
This state does not correspond to a physical one. It is artificially defined by the enthalpy only for the purpose to unveil the subtle enthalpy difference among competing phases.
38.
R. E.
Peierls
,
Quantum Theory of Solids
(
Oxford University Press
,
London
,
1955
).
39.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
40.
A.
Savin
,
J. Mol. Struct.: THEOCHEM
727
,
127
(
2005
).
41.
M.
Marques
,
M. I.
McMahon
,
E.
Gregoryanz
,
M.
Hanfland
,
C. L.
Guillaume
,
C. J.
Pickard
,
G. J.
Ackland
, and
R. J.
Nelmes
,
Phys. Rev. Lett.
106
,
095502
(
2011
).
42.
Y.
Ma
,
M.
Eremets
,
A.
Oganov
,
Y.
Xie
,
I.
Trojan
,
S.
Medvedev
,
A.
Lyakhov
,
M.
Valle
, and
V.
Prakapenka
,
Nature (London)
458
,
182
(
2009
).
43.
V.
Natoli
,
R. M.
Martin
, and
D. M.
Ceperley
,
Phys. Rev. Lett.
70
,
1952
(
1993
).
44.
V.
Natoli
,
R. M.
Martin
, and
D. M.
Ceperley
,
Phys. Rev. Lett.
74
,
1601
(
1995
).
45.
S.
Biermann
,
D.
Hohl
, and
D.
Marx
,
Solid State Commun.
108
,
337
(
1998
).
46.
S.
Biermann
,
D.
Hohl
, and
D.
Marx
,
J. Low Temp. Phys.
110
,
97
(
1998
).
47.
K.
Johnson
and
N. W.
Ashcroft
,
J. Phys.: Condens. Matter
10
,
11135
(
1998
).
48.
N. W.
Ashcroft
,
J. Phys.: Condens. Matter
12
,
A129
(
2000
).
49.
This value is comparable with the root-mean-square radius of gyration of a nucleus in ab initio path integral simulations that have taken the quantum effects of protons into account fully, see Refs. 45 and 46.
50.
L. D.
Landau
and
E. M.
Lifshitz
, Quantum Mechanics (
Non-Relativistic Theory
), 3rd ed. (
Elsevier
,
Singapore
,
1965
).
51.
D. M.
Ceperley
,
Rev. Mod. Phys.
67
,
279
(
1995
).
52.
D. M. Straus and
N. W.
Ashcroft
,
Phys. Rev. Lett.
38
,
415
(
1977
).
53.
E. G.
Brovman
,
Y.
Kagan
, and
A.
Kholas
,
Zh. Eksp. Theor. Fiz.
61
,
2429
(
1971
) [Sov. Phys. JETP 34, 1300 (1972)].
54.
E. G.
Brovman
,
Y.
Kagan
, and
A.
Kholas
,
Zh. Eksp. Theor. Fiz.
62
,
1492
(
1972
) [Sov. Phys. JETP 35, 783 (1972)].
55.
E.
Kaxiras
,
J.
Broughton
, and
R. J.
Hemely
,
Phys. Rev. Lett.
67
,
1138
(
1991
).
56.
N. W.
Ashcroft
,
Phys. Rev. Lett.
21
,
1748
(
1968
).
57.
L. J.
Zhang
,
Y. L.
Niu
,
Q.
Li
,
T.
Cui
,
Y.
Wang
,
Y. M.
Ma
,
Z.
He
, and
G. T.
Zou
,
Solid State Commun.
141
,
610
(
2007
).
58.
E. G.
Maksimov
and
D. Y.
Savrasov
,
Solid State Commun.
119
,
569
(
2001
).
59.
R.
Szczesniaka
and
M. W.
Jarosik
,
Solid State Commun.
149
,
2053
(
2009
).
60.
J. M.
McMahon
and
D. M.
Ceperley
,
Phys. Rev. B
84
,
144515
(
2011
).
61.
R. O.
Jones
and
O.
Gunnarsson
,
Rev. Mod. Phys.
61
,
689
(
1989
).
62.
A. J.
Cohen
,
P.
Mori-Sanchez
, and
W.
Yang
,
Science
321
,
792
(
2008
).
63.
A.
Savin
,
C. J.
Umrigar
, and
X.
Gonze
,
Chem. Phys. Lett.
288
,
391
(
1998
).
64.
M. A.
Morales
,
C.
Pierleoni
, and
D. M.
Ceperley
,
Phys. Rev. E
81
,
021202
(
2010
).
65.
M.
Städele
and
R. M.
Martin
,
Phys. Rev. Lett.
84
,
6070
(
2000
).
66.
P.
Blaha
,
K.
Schwarz
,
G. K. H.
Madsen
,
D.
Kvasnicka
, and
J.
Luitz
, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universität Wien, Austria),
2001
.
You do not currently have access to this content.