Achievement of efficient mixing in microfluidic systems appears to be a highly challenging proposition, as attributable to typical low Reynolds number hydrodynamics over small scales. To circumvent these constraints, numerous strategies, either relying upon a modulation in the microchannel geometry or involving active flow perturbations have been proposed in the literature. However, while the geometric or passive means suffer from a lack of dynamic control on the mixing process, the active methods can be unfavorably energy expensive. Here we show that the problem of controllability and energy efficiency can be optimized to a large extent by combining the active and passive strategies within an integrated microfluidic platform, in the form of serpentine microchannel geometry with embedded electrodes. We demonstrate, both theoretically and experimentally, that in specific operating regimes, the mixing effectiveness (expressed in terms of a quantifiable index) of the designed system can be nontrivially higher than the algebraic sum of effectivenesses realized from pure active and passive mixing configurations, leading to a nonlinear amplification in the separation efficiency. Results of our experiments may be used a generic design principle for optimized mixing performance of lab-on-a-chip microdevices, with a judicious combination of the active and passive mixing paradigms.

1.
N. T.
Nguyen
and
Z.
Wu
,
J. Micromech. Microeng.
15
,
R1
(
2005
).
2.
J. M.
Ottino
and
S.
Wiggins
,
Philos. Trans. R. Soc. London, Ser. A
362
,
923
(
2004
).
3.
C. C.
Chang
and
R. J.
Yang
,
Microfluid. Nanofluid.
3
,
501
(
2007
).
4.
S.
Hardt
,
K. S.
Drese
,
V.
Hessel
, and
F.
Schonfeld
,
Microfluid. Nanofluid.
1
,
108
(
2005
).
5.
J. M.
Ottino
and
S.
Wiggins
,
Science
305
,
485
(
2004
).
6.
H.
Song
,
Z.
Cai
,
H.
Noh
, and
D. J.
Bennett
,
Lab Chip
10
,
734
(
2010
).
7.
M. S.
Williams
,
K. J.
Longmuir
, and
P.
Yager
,
Lab Chip
8
,
1121
(
2008
).
8.
S.
Wiggins
and
J. M.
Ottinio
,
Philos. Trans. R. Soc. London, Ser. A
362
,
937
(
2004
).
9.
M. A.
Stremler
,
F. R.
Haselton
, and
H.
Aref
,
Philos. Trans. R. Soc. London, Ser. A
362
,
1019
(
2004
).
10.
Y. C.
Ahn
,
W.
Jung
, and
Z.
Chen
,
Lab Chip
8
,
125
(
2008
).
11.
F.
Jiang
,
K. S.
Drese
,
S.
Hardt
,
M.
Küpper
, and
F.
Schönfeld
,
AIChE J.
50
,
2297
(
2004
).
12.
R. H.
Liu
,
M. A.
Stremler
,
K. V.
Sharp
,
M. G.
Olsen
,
J. G.
Santiago
,
R. J.
Adrian
,
H.
Aref
, and
D. J.
Beebe
,
J. Microelectromech. Syst.
9
,
190
(
2000
).
13.
A. P.
Sudarsan
and
V. M.
Ugaz
,
Proc. Natl. Acad. Sci. USA
103
,
7228
(
2006
).
14.
E.
Biddiss
,
D.
Erickson
, and
D.
Li
,
Anal. Chem.
76
,
3208
(
2004
).
15.
C. C.
Chang
and
R. J.
Yang
,
Phys. Fluid
21
,
052004
(
2009
).
16.
C. C.
Chang
and
R. J.
Yang
,
Phys. Rev. E
77
,
056311
(
2008
).
17.
J. L.
Lin
,
K. H.
Lee
, and
G. B.
Lee
,
Electrophoresis
26
,
4605
(
2005
).
18.
J. R.
Pacheco
,
Phys. Fluids
20
,
093603
(
2008
).
19.
M.
Lopez
and
M. D.
Graham
,
Phys. Fluid
20
,
053304
(
2008
).
20.
D. S.
Kim
,
S. H.
Lee
,
T. H.
Kwon
, and
C. H.
Ahn
,
Lab Chip
5
,
739
(
2005
).
21.
S.
Hardt
,
H.
Pennemann
, and
F.
Schönfeld
,
Microfluid. Nanofluid.
2
,
237
(
2006
).
22.
T.
Egawa
,
J. L.
Durand
,
E. Y.
Hayden
,
D. L.
Rousseau
, and
S. R.
Yeh
,
Anal. Chem.
81
,
1622
(
2009
).
23.
A. P.
Sudarsan
and
V. M.
Ugaz
,
Lab Chip
6
,
74
(
2006
).
24.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
,
Lab Chip
8
,
1906
(
2008
).
25.
X.
Niu
,
L.
Liu
,
W.
Wen
, and
P.
Sheng
,
Appl. Phys. Lett.
88
,
153508
(
2006
).
26.
T.
Frommelt
,
M.
Kostur
,
M.
Wenzel-Schäfer
,
P.
Talkner
,
P.
Hänggi
, and
A.
Wixforth
,
Phys. Rev. Lett.
100
,
0345021
(
2008
).
27.
S.
Oberti
,
A.
Neild
, and
T. W.
Ng
,
Lab Chip
9
,
1435
(
2009
).
28.
N.
Lynn
,
C.
Henry
, and
D.
Dandy
,
Microfluid. Nanofluid.
5
,
493
(
2008
).
29.
M. H.
Oddy
,
J. G.
Santiago
, and
J. C.
Mikkelsen
,
Anal. Chem.
73
,
5822
(
2001
).
30.
H.
Morgan
and
N. G.
Green
,
AC Electrokinetics: Colloids and Nanoparticles
, 1st ed. (
Research Studies Press Ltd.
,
Williston, VT, USA
,
2003
).
31.
R. B.
Fair
,
Microfluid. Nanofluid.
3
,
245
(
2007
).
32.
S.
Qian
and
H. H.
Bau
,
Anal. Chem.
74
,
3616
(
2002
).
33.
H. Y.
Wu
and
C. H.
Liu
,
Sens. Acuators, A
118
,
107
(
2005
).
34.
H.
Sugioka
,
Phys. Rev. E
81
,
036306
(
2010
).
35.
C. L.
Sun
and
J. Y.
Sie
,
Microfluid. Nanofluid.
8
,
485
(
2010
).
36.
D.
Yan
,
C.
Yang
,
J.
Miao
,
Y.
Lam
, and
X.
Huang
,
Electrophoresis
30
,
3144
(
2009
).
37.
C. K.
Chen
and
C. C.
Cho
,
Chem. Eng. Sci.
63
,
3081
(
2008
).
38.
N.
Sasaki
,
T.
Kitamori
, and
H. B.
Kim
,
Lab Chip
6
,
550
(
2006
).
39.
J. C.
Vassilicos
,
Philos. Trans. R. Soc. London, Ser. A
360
,
2819
(
2002
).
40.
T.
Das
,
T. K.
Maiti
, and
S.
Chakraborty
,
Lab Chip
8
,
1308
(
2008
).
41.
N. R.
Rosaguti
,
D. F.
Fletcher
, and
B. S.
Haynes
,
Chem. Eng. Technol.
28
,
353
(
2005
).
You do not currently have access to this content.