Electrospinning has become a widely implemented technique for the generation of nonwoven mats that are useful in tissue engineering and filter applications. The overriding factor that has contributed to the popularity of this method is the ease with which fibers with submicron diameters can be produced. Fibers on that size scale are comparable to protein filaments that are observed in the extracellular matrix. The apparatus and procedures for conducting electrospinning experiments are ostensibly simple. While it is rarely reported in the literature on this topic, any experience with this method of fiber spinning reveals substantial ambiguities in how the process can be controlled to generate reproducible results. The simplicity of the procedure belies the complexity of the physical processes that determine the electrospinning process dynamics. In this article, three process domains and the physical domain of charge interaction are identified as important in electrospinning: (a) creation of charge carriers, (b) charge transport, (c) residual charge. The initial event that enables electrospinning is the generation of region of excess charge in the fluid that is to be electrospun. The electrostatic forces that develop on this region of charged fluid in the presence of a high potential result in the ejection of a fluid jet that solidifies into the resulting fiber. The transport of charge from the charge solution to the grounded collection device produces some of the current which is observed. That transport can occur by the fluid jet and through the atmosphere surrounding the electrospinning apparatus. Charges that are created in the fluid that are not dissipated remain in the solidified fiber as residual charges. The physics of each of these domains in the electrospinning process is summarized in terms of the current understanding, and possible sources of ambiguity in the implementation of this technique are indicated. Directions for future research to further articulate the behavior of the electrospinning process are suggested.

1.
Y.
Filatov
,
A.
Budyka
, and
V.
Kirichenko
,
Electrospinning of Micro- and Nanofibers: Fundamentals and Applications in Separation and Filtration Processes
(
Begell House
,
Redding, CT
,
2007
).
2.
S. Y.
Chew
,
Y.
Wen
,
Y.
Dzenis
, and
K. W.
Leong
,
Curr. Pharm. Des.
12
(
36
),
4751
(
2006
).
3.
M.
Li
,
M. J.
Mondrinos
,
M. R.
Gandhi
,
F. K.
Ko
,
A. S.
Weiss
, and
P. I.
Lelkes
,
Biomaterials
26
(
30
),
5999
(
2005
).
4.
P.
Brun
,
F.
Ghezzo
,
M.
Roso
,
R.
Danesin
,
G.
Palù
,
A.
Bagno
,
M.
Modesti
,
I.
Castagliuolo
, and
M.
Dettin
,
Acta Biomater.
7
(
6
),
2526
(
2011
).
5.
6.
A.
Formhals
, U.S. Patent No. 1,975,504.
7.
M.
Cloupeau
and
B.
Prunet-Foch
,
J. Aerosol Sci.
25
(
6
),
1021
(
1994
).
8.
D. R.
Salem
,
Structure Formation in Polymeric Fibers
(
Hanser Verlag
,
2001
).
9.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
280
,
383
(
1964
).
10.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
313
,
453
(
1969
).
11.
I.
Marginean
,
L.
Parvin
,
L.
Heffernan
, and
A.
Vertes
,
Anal. Chem.
76
(
14
),
4202
(
2004
).
12.
Y. M.
Shin
,
M. M.
Hohman
,
M. P.
Brenner
, and
G. C.
Rutledge
,
Appl. Phys. Lett.
78
(
8
),
1149
(
2001
).
13.
D. H.
Reneker
and
A. L.
Yarin
,
Polymer
49
(
10
),
2387
(
2008
).
14.
P. K.
Baumgarten
,
J. Colloid Interface Sci.
36
,
71
(
1971
).
15.
D. H.
Reneker
,
A. L.
Yarin
,
H.
Fong
, and
S.
Koombhongse
,
J. Appl. Phys.
87
(
9 I
),
4531
(
2000
).
16.
F. J.
Higuera
,
Phys. Rev. E
68
(
12
),
163041
(
2003
).
17.
D. A.
Saville
,
Ann. Rev. Fluid Mech.
29
,
27
(
1997
).
18.
A. M.
Gañán-Calvo
,
J.
Dávila
, and
A.
Barrero
,
J. Aerosol Sci.
28
(
2
),
249
(
1997
).
19.
F. J.
Higuera
,
J. Fluid Mech.
648
,
35
(
2010
).
20.
G.
Riboux
,
A. G.
Marnín
,,
I. G.
Loscertales
, and
A.
Barrero
,
J. Fluid Mech.
671
,
226
(
2011
).
21.
G.
Taylor
,
Proc. R. Soc. London, Ser. A
291
(
1425
),
159
(
1966
).
22.
J.
Fernández de la Mora
,
Annual Review of Fluid Mechanics
39
,
217
(
2007
).
23.
J. R.
Melcher
and
G. I.
Taylor
,
Ann. Rev. Fluid Mech.
1
,
111
(
1969
).
24.
M. M.
Hohman
,
M.
Shin
,
G.
Rutledge
, and
M. P.
Brenner
,
Phys. Fluids
13
(
8
),
2201
(
2001
).
25.
W. B.
Russel
,
Colloidal Dispersions
(
Cambridge University Press
,
New York
,
1991
).
26.
C.-W.
Kim
,
D.-S.
Kim
,
S.-Y.
Kang
,
M.
Marquez
, and
Y. L.
Joo
,
Polymer
47
(
14
),
5097
(
2006
).
27.
S. A.
Theron
,
E.
Zussman
, and
A. L.
Yarin
,
Polymer
45
,
2017
(
2004
).
28.
J. M.
Deitzel
,
J.
Kleinmeyer
,
D.
Harris
, and
N. C.
Beck Tan
,
Polymer
42
(
1
),
261
(
2001
).
29.
T.
Subbiah
,
G. S.
Bhat
,
R. W.
Tock
,
S.
Parameswaran
, and
S. S.
Ramkumar
,
J. Appl. Polymer Sci.
96
(
2
),
557
(
2005
).
30.
A. L.
Yarin
and
E.
Zussman
,
Polymer
45
,
2977
(
2004
).
31.
J. J.
Feng
,
Phys. Fluids
14
(
11
),
3912
(
2002
).
32.
J.
Shrimpton
,
Charge Injection Systems: Physical Principles, Experimental and Theoretical Work
(
Springer
,
Berlin
,
2009
).
33.
A. E.
Castellanos
,
Electrohydrodynamics
(
Springer-Verlag
,
New York
,
1998
).
34.
E. E.
Kunhardt
,
L. G.
Christophorou
, and
L. H.
Luessen
, eds.,
The Liquid State and its Electrical Properties
(
Plenum
,
New York
,
1987
).
35.
W. F.
Schmidt
,
Liquid State Electronics of Insulating Liquids
(
CRC Press
,
Boca Raton, FL
,
1997
).
36.
A. W.
Bright
and
B.
Makin
,
J. Mater. Sci.
2
(
2
),
184
(
1967
).
37.
V. Y.
Ushakov
,
Impulse Breakdown of Liquids
(
Springer
,
New York
,
2007
).
38.
G.
Coe
,
J. F.
Hughes
, and
P. E.
Secker
,
Br. J. Appl. Phys.
17
,
885
(
1966
).
39.
F. J.
Higuera
,
Phys. Fluids
14
,
423
(
2002
).
40.
K.
Sasaki
,
H.
Mori
,
N.
Tanaka
,
H.
Murata
,
C.
Morita
,
H.
Shimoyama
, and
K.
Kuroda
,
J. Electron Microsc.
59
,
S89
(
2010
).
41.
J. C.
Filippini
and
C. T.
Meyer
,
IEEE Trans. Dielectr. Electr. Insul.
23
(
2
),
275
(
1988
).
42.
P.
Atten
,
B.
Malraison
, and
M.
Zahn
,
IEEE Trans. Dielectr. Electr. Insul.
4
(
6
),
710
(
1997
).
43.
L.
Onsager
,
J. Chem. Phys.
2
,
599
(
1934
).
44.
A.
Alj
,
A.
Denat
,
J. P.
Gosse
,
B.
Gosse
, and
I.
Nakamura
,
IEEE Trans. Dielectr. Electr. Insul.
EI-20
(
2
),
221
(
1985
).
45.
H. J.
Plumley
,
Phys. Rev.
59
(
2
),
200
(
1941
).
46.
G. B.
Brière
,
Br. J. Appl. Phys.
15
(
4
),
413
(
1964
).
47.
F.
Pontiga
and
A.
Castellanos
,
IEEE Trans. Dielectr. Electr. Insul.
3
,
792
(
1996
).
48.
W. A.
Sirignano
and
C.
Mehring
,
Prog. Energy Combustion Sci.
26
(
4-6
),
609
(
2000
).
49.
R. H.
Colby
,
L. J.
Fetters
,
W. G.
Funk
, and
W. W.
Graessley
,
Macromolecules
24
(
13
),
3873
(
1991
).
50.
J. H.
Yu
,
S. V.
Fridrikh
, and
G. C.
Rutledge
,
Polymer
47
(
13
),
4789
(
2006
).
51.
S.
Arbab
,
P.
Noorpanah
,
N.
Mohammadi
, and
A.
Zeinolebadi
,
J. Polym. Res.
18
,
1343
(
2011
).
52.
M. G.
McKee
,
C. L.
Elkins
, and
T. E.
Long
,
Polymer
45
(
26
),
8705
(
2004
).
53.
C. J.
Luo
,
M.
Nangrejo
, and
M.
Edirisinghe
,
Polymer
51
(
7
),
1654
(
2010
).
54.
C.
Subramanian
,
R. A.
Weiss
, and
M. T.
Shaw
,
Polymer
51
(
9
),
1983
(
2010
).
55.
T.
Han
,
A. L.
Yarin
, and
D. H.
Reneker
,
Polymer
49
(
6
),
1651
(
2008
).
56.
R.
Grewal
, M.S. thesis,
New Jersey Institute of Technology
,
2010
.
57.
V. E.
Kalayci
,
P. K.
Patra
,
Y. K.
Kim
,
S. C.
Ugbolue
, and
S. B.
Warner
,
Polymer
46
,
7191
(
2005
).
58.
S.
Tripatanasuwan
and
D. H.
Reneker
,
Polymer
50
(
8
),
1835
(
2009
).
59.
P. K.
Bhattacharjee
,
T. M.
Schneider
,
M. P.
Brenner
,
G. H.
McKinley
, and
G. C.
Rutledge
,
J. Appl. Phys.
107
(
4
),
044306
(
2010
).
60.
H.
Niu
,
T.
Lin
, and
X.
Wang
,
J. Appl. Polym. Sci.
114
(
6
),
3524
(
2009
).
61.
O.
Jirsak
,
P.
Sysel
,
F.
Sanetrnik
,
J.
Hruza
, and
J.
Chaloupek
,
J. Nanomaterials
2010
,
842831
(
2010
).
62.
T.
Miloh
,
B.
Spivak
, and
A. L.
Yarin
,
J. Appl. Phys.
106
,
114910
114911
(
2009
).
63.
S. L.
Shenoy
,
W. D.
Bates
,
H. L.
Frisch
, and
G. E.
Wnek
,
Polymer
46
(
10
),
3372
(
2005
).
64.
B. A.
Miller-Chou
and
J. L.
Koenig
,
Prog. Polym. Sci.
28
(
8
),
1223
(
2003
).
65.
C. K.
Chan
,
C.
Whitehouse
,
P.
Gao
, and
C. K.
Chai
,
Polymer
42
(
18
),
7847
(
2001
).
66.
J.
Stanger
,
N.
Tucker
,
A.
Wallace
,
N.
Larsen
,
M.
Staiger
, and
R.
Reeves
,
J. Appl. Polym. Sci.
112
,
1729
(
2009
).
67.
C. P.
Carroll
and
Y. L.
Joo
,
Phys. Fluids
21
,
103101
(
2009
).
68.
A. M.
Ganan-Calvo
,
J. Aeorosol Sci.
30
,
863
(
1999
).
69.
J. L.
Fernandez de la Mora
, and
I. G.
Loscertales
,
Fluid Mech.
260
,
155
(
1994
).
70.
S.
Hur
and
W. D.
Kim
,
Key Eng. Mater.
326-328
,
393
(
2006
).
71.
G. M.
Sessler
,
Electrets
(
Springer-Verlag, New York
,
1987
).
72.
Y.
Arita
,
S. S.
Shiratori
, and
K.
Ikezaki
,
J. Electrostat.
57
(
3-4
),
263
(
2003
).
73.
N.
Mohmeyer
,
N.
Behrendt
,
X. Q.
Zhang
,
P.
Smith
,
V.
Altstadt
,
G. M.
Sessler
, and
H. W.
Schmidt
,
Polymer
48
(
6
),
1612
(
2007
).
74.
A.
Mishra
,
J. Appl. Polym. Sci.
27
(
4
),
1107
(
1982
).
75.
G. M.
Sessler
, in
Electrical Properties of Polymers
, edited by
D.
Seanor
(
Academic, 1982
), pp.
241−284
.
76.
K.
Hayashi
,
K.
Yoshino
, and
Y.
Inuishi
,
Jpn. J. Appl Phys.
12
(
7
),
1089
(
1973
).
77.
J.
Lowell
,
J. Phys. D: Appl. Phys.
23
(
2
),
205
(
1990
).
78.
D. K.
Das-Gupta
,
IEEE Trans. Dielectr. Electr. Insul.
4
,
140
(
1997
).
79.
Y. R.
Yan
and
C. W.
Zhang
,
Proceedings of the Fiber Society 2009 Spring Conference
,Vols. I andIi, (The Fiber Society, Shanghai, China,
2009
), pp.
825−828
.
80.
M.
Ignatova
,
T.
Yovcheva
,
A.
Viraneva
,
G.
Mekishev
,
N.
Manolova
, and
I.
Rashkov
,
Eur. Polym. J.
44
(
7
),
1962
(
2008
).
81.
L. H.
Catalani
,
G.
Collins
, and
M.
Jaffe
,
Macromolecules
40
,
1693
(
2007
).
82.
L.
Liu
and
Y. A.
Dzenis
,
Nanotechnology
19
,
355307
(
2008
).
83.
E.
Nemeth
,
V.
Albrecht
,
G.
Schubert
, and
F.
Simon
,
J. Electrostat.
58
(
1-2
),
3
(
2003
).
84.
L. S.
McCarty
and
G. M.
Whitesides
,
Angew Chem., Int. Ed.
47
(
12
),
2188
(
2008
).
85.
L. C.
Soares
,
S.
Bertazzo
,
T. A.
Burgo
,
V.
Baldim
, and
F.
Galembeck
,
J. Braz. Chem. Soc.
19
,
277
(
2008
).
86.
D. P.
Erhard
,
D.
Lovera
,
R.
Giesa
, V. Altstädt, and
H.-W.
Schmidt
,
J. Polym. Sci. Part B: Polym. Phys.
48
(
9
),
990
(
2010
).
87.
A. E.
Seaver
,
presented at the Proc. ESA Annual Meeting
,
1999
(unpublished).
88.
D.
Lovera
,
C.
Bilbao
,
P.
Schreier
,
L.
Kador
,
H.-W.
Schmidt
, and
V.
Altst
ädt,
Polym. Eng. Sci.
49
,
2430
(
2009
).
You do not currently have access to this content.