The chemical attachment and field emission (FE) properties of single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes (MWCNTs) chemically attached to a silicon substrate have been investigated. A high density of CNTs was revealed by atomic force microscopy imaging with orientation varying with CNT type. Raman spectroscopy was used to confirm the CNT type and diameter on the surfaces. The field emission properties of the surfaces were studied and both current-voltage and Fowler-Nordheim plots were obtained. The SWCNTs exhibited superior FE characteristics with a turn-on voltage (Eto) of 1.28 V μm−1 and electric field enhancement factor (β) of 5587. The DWCNT surface showed an Eto of 1.91 V μm−1 and a β of 4748, whereas the MWCNT surface exhibited an Eto of 2.79 V μm−1 and a β of 3069. The emission stability of each CNT type was investigated and it was found that SWCNTs produced the most stable emission. The differences between the FE characteristics and stability are explained in terms of the CNT diameter, vertical alignment, and crystallinity. The findings suggest that strength of substrate adhesion and CNT crystallinity play a major role in FE stability. Comparisons to other FE studies are made and the potential for device application is discussed.

1.
A. G.
Rinzler
,
J. H.
Hafner
,
P.
Nikolaev
,
P.
Nordlander
,
D. T.
Colbert
,
R. E.
Smalley
,
L.
Lou
,
S. G.
Kim
, and
D.
Tomanek
,
Science
269
,
1550
(
1995
).
2.
B. Q.
Wei
,
R.
Vajtai
, and
P. M.
Ajayan
,
App. Phys. Lett.
79
,
1172
(
2001
).
3.
J. M.
Bonard
,
H.
Kind
,
T.
Stokli
, and
L.-O.
Nilsson
,
Solid State Electron.
45
,
893
(
2001
).
4.
R. C.
Smith
,
J. Appl. Phys.
106
,
014314
(
2009
).
5.
A.
Pandey
,
A.
Prasad
,
J. P.
Moscatello
, and
Y. K.
Yap
,
ACS Nano
4
,
6760
(
2010
).
6.
J. M.
Bonard
,
M.
Croci
,
C.
Klinke
,
R.
Kurt
,
O.
Noury
, and
N.
Weiss
,
Carbon
40
,
1715
(
2002
).
7.
Y.-W.
Son
,
S.
Oh
,
J.
Ihm
, and
S.
Han
,
Nanotechnology
16
,
125
(
2005
).
8.
S.
Fan
,
M. G.
Chapline
,
N. R.
Franklin
,
T. W.
Tombler
,
A. M.
Cassell
, and
H.
Dai
,
Science
283
,
512
(
1999
).
9.
C.
Xiomara
,
X.
Calderón-Colón
,
H.
Geng
,
B.
Gao
,
L.
An
,
G.
Cao
, and
O.
Zhou
,
Nanotechnology
20
,
325707
(
2009
).
10.
K. T.
Constantopoulos
,
C. J.
Shearer
,
A. V.
Ellis
,
N. H.
Voelcker
, and
J. G.
Shapter
,
Adv. Mater.
22
,
557
(
2010
).
11.
L. B.
Zhu
,
Y. Y.
Sun
,
D. W.
Hess
, and
C. P.
Wong
,
Nano Lett.
6
,
243
(
2006
).
12.
J.
Yu
,
J. G.
Shapter
,
J. S.
Quinton
,
M. R.
Johnston
, and
D. A.
Beattie
,
Phys. Chem. Chem. Phys.
9
,
510
(
2007
).
13.
J.
Yu
,
J. G.
Shapter
,
M. R.
Johnston
,
J. S.
Quinton
, and
J.
Gooding
,
Electrochim. Acta
52
,
6206
(
2007
).
14.
M. A.
Bissett
and
J. G.
Shapter
,
J. Phys. Chem. C
114
,
6778
(
2010
).
15.
C. J.
Shearer
,
J. G.
Shapter
,
J. S.
Quinton
,
P. C.
Dastoor
,
L.
Thomsen
, and
K. M.
O’Donnell
,
J. Mater. Chem.
18
,
5753
(
2008
).
16.
M.
Marshall
,
S.
Popa-Nita
,and
J. G.
Shapter
,
Carbon
44
,
1137
(
2006
).
17.
D. K.
Aswal
,
S.
Lenfant
,
D.
Guerin
,
J. V.
Yakhmi
, and
D.
Vuillaume
,
Anal. Chim. Acta
568
,
84
(
2006
).
18.
P.
Diao
and
Z.
Liu
,
Adv. Mater.
22
,
1430
(
2010
).
19.
Z.
Liu
,
Z.
Shen
,
T.
Zhu
,
S.
Hou
, and
L.
Ying
,
Langmuir
16
,
3569
(
2000
).
20.
B.
Wu
,
J.
Zhang
,
Z.
Wei
,
S.
Cai
, and
Z.
Liu
,
J. Phys. Chem. B
105
,
5075
(
2001
).
21.
B. S.
Flavel
,
J.
Yu
,
J. G.
Shapter
, and
J. S.
Quinton
,
Carbon
45
,
2551
(
2007
).
22.
J.
Yu
,
S.
Mathew
,
B. S.
Flavel
,
M. R.
Johnston
, and
J. G.
Shapter
,
J. Am. Chem. Soc.
130
,
8788
(
2008
).
23.
C. J.
Shearer
,
A. V.
Ellis
,
J. G.
Shapter
, and
N. H.
Voelcker
,
Langmuir
26
,
18468
(
2010
).
24.
H. L.
Young
,
H. A.
Kay
,
S. P.
Jin
,
Y.
Cheol-Min
,
Y. J.
Seung
,
C. L.
Seong
,
K.
Chul
,
S.
Joo-Hiuk
,and
J.
Mun Seok
,
J. Am. Chem. Soc.
127
,
5196
(
2005
).
25.
H. L.
Young
,
S.
Kwanyong
,
A. P.
Kyung
,
K.
Changwook
,
H.
Seungwu
, and
K.
Bongsoo
,
J. Am. Chem. Soc.
127
,
15724
(
2005
).
26.
M. S.
Dresselhaus
,
G.
Dresselhaus
,
R.
Saito
, and
A.
Jorio
,
Phys. Rep.
409
,
47
(
2005
).
27.
D. A.
Heller
,
P. W.
Barone
,
J. P.
Swanson
,
R. M.
Mayrhofer
, and
M. S.
Strano
,
J. Phys. Chem. B
108
,
6905
(
2004
).
28.
S.
Chakrabarti
,
K.
Gong
, and
L.
Dai
,
J. Phys. Chem. C
112
,
8136
(
2008
).
29.
See supplementary material at http://dx.doi.org/10.1063/1.3687363 for Raman spectra and analysis of raw DWCNTs showing the extra RBM peaks that are hidden by the silicon peaks in the Si-DWCNT electrodes.
30.
J.-P.
Salvetat
,
A. J.
Kulik
,
J.-M.
Bonard
,
G. A. D.
Briggs
,
T.
Stöckli
,
K.
Méténier
,
S.
Bonnamy
,
F.
Béguin
,
N. A.
Burnham
, and
L.
Forró
,
Adv. Mater.
11
,
161
(
1999
).
31.
N.
Jonge
,
M.
Allioux
,
M.
Doytdcheva
,
M.
Kaiser
,
K. B. K.
Teo
,
R. G.
Lacerda
, and
W. I.
Milne
,
App. Phys. Lett.
85
,
1607
(
2004
).
32.
X.
Lu
,
Q.
Yang
,
C.
Xiao
, and
A.
Hirose
,
J. Phys. D
39
,
3375
(
2006
).
33.
W.
Liang
,
M.
Bockrath
,
D.
Bozovic
,
J. H.
Hafner
,
M.
Tinkham
, and
H.
Park
,
Nature (London)
411
,
665
(
2001
).
34.
P.
Liu
,
Q.
Sun
,
F.
Zhu
,
K.
Liu
,
K.
Jiang
,
L.
Liu
,
Q.
Li
, and
S.
Fan
,
Nano Lett.
8
,
647
(
2008
).
35.
S. C.
Youn
,
D.-H.
Jung
,
Y. K.
Ko
,
Y. W.
Jin
,
J. M.
Kim
, and
H.-T.
Jung
,
J. Am. Chem. Soc.
131
,
742
(
2008
).
36.
Y.
Chen
,
H.
Miao
,
R. J.
Lin
,
M.
Zhang
,
R.
Liang
,
C.
Zhang
, and
B.
Wang
,
Nanotechnology
21
,
495702
(
2010
).
37.
Y.
Chen
,
H.
Miao
,
R. J.
Lin
,
M.
Zhang
,
R.
Liang
,
C.
Zhang
, and
B.
Wang
,
Nanotechnology
19
,
415703
(
2008
).
38.
C.
Liu
,
K. S.
Kim
,
J.
Baek
,
Y.
Cho
,
S.
Han
,
S.-W.
Kim
,
N.-K.
Min
,
Y.
Choi
,
J.-U.
Kim
, and
C. J.
Lee
,
Carbon
47
,
1158
(
2009
).
39.
B.
Ha
,
D. H.
Shin
,
J.
Park
, and
C. J.
Lee
,
J. Phys. Chem. C
112
,
430
(
2007
).
40.
G.
Chen
,
D. H.
Shin
,
S.
Kim
,
S.
Roth
, and
C. J.
Lee
,
Nanotechnology
21
,
015704
(
2010
).
41.
R.
Seelaboyina
,
S.
Boddepalli
,
K.
Noh
,
M.
Jeon
, and
W.
Choi
,
Nanotechnology
19
,
065605
(
2008
).
42.
X.
Fang
,
Y.
Bando
,
U. K.
Gautam
,
C.
Ye
, and
D.
Golberg
,
J. Mater. Chem
18
,
509
(
2008
).
43.
B.
Cao
,
X.
Teng
,
S. H.
Heo
,
Y.
Li
,
S. O.
Cho
,
G.
Li
, and
W.
Cai
,
J. Phys. Chem. C
111
,
2470
(
2007
).
44.
H.
Wang
,
Z.
Li
,
K.
Ghosh
,
T.
Maruyama
,
S.
Inoue
, and
Y.
Ando
,
Carbon
48
,
2882
(
2010
).
45.
S. I.
Jung
,
S. H.
Jo
,
H. S.
Moon
,
J. M.
Kim
,
D.-S.
Zang
, and
C. J.
Lee
,
J. Phys. Chem. C
111
,
4175
(
2007
).
46.
B. S.
Flavel
,
J.
Yu
,
J. G.
Shapter
, and
J. S.
Quinton
,
Electrochim. Acta
53
,
5653
(
2008
).
47.
J. M.
Bonard
,
C.
Klinke
,
K. A.
Dean
, and
B. F.
Coll
,
Phys. Rev. B
67
,
115406
(
2003
).
48.
K. M.
O’Donnell
, Ph.D. thesis,
University of Newcastle
, Callaghan, NSW, Australia,
2010
.
49.
C. Y.
Zhi
,
X. D.
Bai
, and
E. G.
Wang
,
Appl. Phys. Lett.
81
,
1690
(
2002
).
50.
B.
Ulmen
,
V. K.
Kayastha
,
A.
DeConinck
,
J.
Wang
, and
Y. K.
Yap
,
Diamond Relat. Mater.
15
,
212
(
2006
).

Supplementary Material

You do not currently have access to this content.