Through comparing the oxygen precipitation in the heavily and lightly phosphorus (P)-doped Czochralski silicon (CZ Si) specimens subjected to the simulated cooling processes of silicon ingot, we researched the influences of heavily P doping on grown-in precipitates by preferential etching and transmission electron microscopy (TEM). It was found that grown-in precipitates were more significant in heavily P-doped CZ Si than in lightly one. Most grown-in precipitates in heavily P-doped CZ Si were generated at (800–600) °C. The significant grown-in oxygen precipitates in the heavily P-doped CZ Si would change the density and morphology of oxygen precipitation. TEM examination revealed that the grown-in precipitates in heavily P-doped CZ Si were amorphous oxygen precipitates composed of tiny precipitates in essential. Although more or less phosphorus may be incorporated in the grown-in precipitates, however, phosphorus cannot be detected so far. We further confirmed that extending annealing at 550 °C produced significant silicon phosphide (SiP) precipitation in heavily P-doped CZ Si. Summarily, enhancement of grown-in oxygen precipitates was attributed to SiP precipitation and high-concentration vacancy, tentatively. Nonetheless, further investigation on the essential of grown-in precipitates in heavily P-doped CZ Si is worthy.

1.
R. R.
Troutman
,
G. D.
Ji
, and
W. H.
Lu
,
Latch-up in CMOS Technology: The problem and its Cure
(
Kluwer Academic
,
Boston
,
1986
).
2.
H.
Tsuya
,
Jpn. J. Appl. Phys.
43
,
4055
(
2004
).
3.
A.
Borghesi
,
B.
Pivac
,
A.
Sassella
, and
A.
Stella
,
J. Appl. Phys.
77
,
4169
(
1995
).
4.
H.
Kodera
,
Jpn. J. Appl. Phys.
2
,
527
(
1963
).
5.
H.-D.
Chiou
,
J. Electrochem. Soc.
147
,
345
(
2000
).
6.
Y.
Zeng
,
D.
Yang
,
X.
Ma
,
J.
Chen
, and
D.
Que
,
Mater. Sci. Eng. B-Solid.
159–160
,
145
(
2009
).
7.
Y.
Zeng
,
X.
Ma
,
W.
Wang
,
D.
Tian
,
L.
Gong
, and
D.
Yang
,
J. Appl. Phys.
105
,
093503
(
2009
).
8.
K.
Sumino
and
I.
Yonenaga
,
Oxygen in Silicon
(
Academic
,
New York
,
1994
), p.
358
.
9.
K. H.
Yang
,
J. Electrochem. Soc.
131
,
1140
(
1984
).
10.
Y.
Zeng
,
D.
Yang
,
X.
Ma
,
X.
Zhang
,
L.
Lin
, and
D.
Que
,
ECS Trans.
18
,
1001
(
2009
).
11.
A.
Armigliato
,
D.
Nobili
,
M.
Servidori
, and
S.
Solmi
,
J. Appl. Phys.
47
,
5489
(
1976
).
12.
A.
Armigliato
,
M.
Servidori
,
S.
Solmi
, and
I.
Vecchi
,
J. Appl. Phys.
48
,
1806
(
1977
).
13.
H.
Bender
,
D.
Avau
,
W.
Vandervorst
,
J.
Van Landuyt
, and
H. E.
Maes
,
Matter Sci. Forum
10–12
,
1165
(
1986
).
14.
S.
Solmi
,
A.
Parisini
,
R.
Angelucci
,
A.
Armigliato
,
D.
Nobili
, and
L.
Moro
,
Phys. Rev. B.
53
,
7836
(
1996
).
15.
P. M.
Fahey
,
P. B.
Griffin
, and
J. D.
Plummer
,
Rev. Mod. Phys.
61
,
289
(
1989
).
16.
V. V.
Voronkov
and
R.
Falster
,
J. Cryst. Growth
204
,
462
(
1999
).
17.
V. V.
Voronkov
and
R.
Falster
,
Microelectron. Eng.
56
,
165
(
2001
).
18.
Y.
Zeng
,
X.
Ma
,
J.
Chen
,
D.
Tian
,
L.
Gong
, and
D.
Yang
,
Semicond. Sci. Technol.
24
,
105030
(
2009
).
19.
W. A.
Tiller
,
S.
Hahn
, and
F. A.
Ponce
,
J. Appl. Phys.
59
,
3255
(
1986
).
20.
S. M.
Hu
,
Appl. Phys. Lett.
48
,
115
(
1986
).
21.
W.
Wijaranakula
,
J. Appl. Phys.
72
,
4026
(
1992
).
You do not currently have access to this content.