We demonstrate how to appropriately estimate the zero-frequency (static) hyperpolarizability of an organic molecule from its charge distribution, and we explore applications of these estimates for identifying and evaluating new organic nonlinear optical (NLO) materials. First, we calculate hyperpolarizabilities from Hartree-Fock–derived charge distributions and find order-of-magnitude agreement with experimental values. We show that these simple arithmetic calculations will enable systematic searches for new organic NLO molecules. Second, we derive hyperpolarizabilities from crystallographic data using a multipolar charge-density analysis and find good agreement with empirical calculations. This demonstrates an experimental determination of the full static hyperpolarizability tensor in a solid-state sample.

1.
N.
Prasad
and
D. J.
Williams
,
Introduction to Nonlinear Optical Effects in Molecules and Polymers
(
Wiley
,
New York
,
1991
).
2.
J.
Zyss
,
I.
Ledoux
, and
J. F.
Nicoud
,
in Molecular Nonlinear Optics: Materials, Physics and Devices
(
Academic
,
New York
,
1994
), p.
129
.
3.
C.
Bosshard
,
K.
Sutter
,
P.
Prêtre
,
J.
Hulliger
,
M.
Flörsheimer
,
P.
Kaatz
, and
P.
Günter
,
Organic Nonlinear Optical Materials
(
Gordon and Breach
,
Basel
,
1995
).
4.
R. L.
Sutherland
,
Handbook of Nonlinear Optics
(
Dekker
,
New York
,
1996
).
5.
C.
Bosshard
,
R.
Spreiter
,
U.
Meier
,
I.
Liakatas
,
M.
Bösch
,
M.
Jäger
,
S.
Manetta
,
S.
Follonier
, and
P.
Günter
, in
Crystal Engineering: From Molecules and Crystals to Materials
, edited by
D.
Braga
,
F.
Grepioni
, and
A.
Orpen
(
Kluwer Academic
,
Dordrecht
,
1999
), p.
261
.
6.
L. R.
Dalton
,
P. A.
Sullivan
, and
D. H.
Bale
,
Chem. Rev.
110
,
25
(
2010
).
7.
M. G.
Kuzyk
,
Phys. Rev. A
72
,
053819
(
2005
).
8.
A. M.
Kelley
,
J. Opt. Soc. Am. B
19
,
1890
(
2002
).
9.
K.
Tripathy
,
J.
Pérez-Moreno
,
M. G.
Kuzyk
,
B. J.
Coe
,
K.
Clays
, and
A. M.
Kelley
,
J. Chem. Phys.
121
,
7932
(
2004
).
10.
M.
Drobizhev
,
Y.
Stepanenko
,
Y.
Dzenis
,
A.
Karotki
,
A.
Rebane
,
P. N.
Taylor
, and
H. L.
Anderson
,
J. Am. Chem. Soc.
126
,
15352
(
2004
).
11.
J.
Pérez-Moreno
,
K.
Clays
, and
M. G.
Kuzyk
,
J. Chem. Phys.
128
,
084109
(
2008
).
12.
13.
F. N. H.
Robinson
,
Bell Syst. Tech. J.
913
,
46
(
1967
).
14.
A.
Fkyerat
,
A.
Guelzim
,
F.
Baert
,
J.
Zyss
, and
A.
Périgaud
,
Phys. Rev. B
53
,
16236
(
1996
).
15.
F.
Hamzaoui
,
A.
Zanoun
, and
G.
Vergoten
,
J. Mol. Struct.
697
,
17
(
2004
).
16.
A.
Chouaih
,
F.
Hamzaoui
, and
G.
Vergoten
,
J. Mol. Struct.
738
,
33
(
2005
).
17.
A. E.
Whitten
,
D.
Jayatilaka
, and
M. A.
Spackman
,
J. Chem. Phys.
125
,
174505
(
2006
).
18.
J. M.
Cole
,
A. E.
Goeta
,
J. A. K.
Howard
, and
G. J.
McIntyre
,
Acta Cryst. B
58
,
690
(
2002
).
19.
J. M.
Cole
,
R. C. B.
Copley
,
G. J.
McIntyre
,
J. A. K.
Howard
,
M.
Szablewski
, and
G. H.
Cross
,
Phys. Rev. B
65
,
125107
(
2002
).
20.
J. C.
Cole
,
J. A. K.
Howard
,
G. H.
Cross
, and
M.
Szablewski
,
Acta Cryst. C
51
,
715
(
1995
).
21.
M.
Szablewski
,
P. R.
Thomas
,
A.
Thornton
,
D.
Bloor
,
G. H.
Cross
,
J. M.
Cole
,
J. A. K.
Howard
,
M.
Malagoli
,
F.
Meyers
,
J.-L.
Brédas
,
W.
Wenseleers
, and
E.
Goovaerts
,
J. Am. Chem. Soc.
119
,
3144
(
1997
).
22.
U. B.
Ramabadran
,
D. E.
Zelmon
, and
G. C.
Kennedy
,
Appl. Phys. Lett.
60
,
2589
(
1992
).
23.
H. O.
Marcy
,
L.
Warren
,
M. S.
Webb
,
C. A.
Ebbers
,
S. P.
Velsdo
,
G. C.
Kennedy
, and
G. C.
Catella
,
App. Opt.
31
,
5051
(
1992
).
24.
P.
Kerkoc
,
V.
Venkataramanan
,
S.
Lochran
,
R. T.
Bailey
,
F. R.
Cruickshank
,
D.
Pugh
,
J. N.
Sherwood
,
R.
Moseley
,
A. E.
Goeta
,
C. W.
Lehmann
, and
J. A. K.
Howard
,
J. Appl. Phys.
80
,
6666
(
1996
).
25.
D. D.
Hickstein
, M.Phil. thesis,
University of Cambridge
,
2008
.
26.
B.
Orr
and
J.
Ward
,
Mol. Phys.
20
,
513
(
1971
).
28.
See supplementary material at http://dx.doi.org/10.1063/1.3678593 for further discussion of the molecular moments approximation, literature review of experimental values, direct comparison with the results of CPHF calculations, and for Fig. S-3, showing order of magnitude agreement parameterized by number of electrons, n.
29.
M. G.
Sylvain
and
I. G.
Csizmadia
,
Chem. Phys. Lett.
136
,
575
(
1987
).
30.
D.
Jayatilaka
,
D. J.
Grimwood
,
A.
Lee
,
A.
Lemay
,
A. J.
Russell
,
C.
Taylor
,
S. K.
Wolff
,
P.
Cassam-Chenai
, and
A.
Whitten
,
TONTO, a System for Computational Chemistry
(
University of Western Australia
,
Crawley, Perth, Australia
,
2005
).
31.
R.
Shi
and
A.
Garito
, “
Introduction: Conventions and standards for non-linear optical processes
,” in
Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials
(
Marcel Dekker
,
New York
,
1998
), pp.
1
36
.
32.
J. L.
Oudar
and
D. S.
Chemla
,
J. Chem. Phys.
66
,
2664
(
1977
).
33.
J.
Campo
,
W.
Wenseleers
,
E.
Goovaerts
,
M.
Szablewski
, and
G. H.
Cross
,
J. Phys. Chem. C
112
,
287
(
2008
).
34.
M.
Kuzyk
and
C.
Dirk
,
Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials
(
Marcel Dekker
,
New York
,
1998
) pp.
311
514
.
35.
A.
Willetts
,
J. E.
Rice
,
D. M.
Burland
, and
D. P.
Shelton
,
J. Chem. Phys.
89
,
7590
(
1992
).
36.
G. J. B.
Hurst
,
M.
Dupuis
, and
E.
Clementi
,
J. Chem. Phys.
,
89
,
385
(
1988
).
37.
A. P.
Higginbotham
, M.Phil. thesis,
University of Cambridge
,
2010
.
38.
A.
Volkov
,
C.
Gatti
,
Y.
Abramov
, and
P.
Coppens
,
Acta Cryst.
A56
,
252
(
2000
).
39.
S.
Swaminathan
,
B.
Craven
,
M.
Spackman
, and
R.
Stewart
,
Acta Cryst.
B40
,
398
(
1984
).
40.
J.
Zyss
and
I.
Ledoux
,
Chem. Rev.
94
,
77
(
1994
).
41.
M.
Spackman
,
Chem. Rev.
92
,
1769
(
1992
).

Supplementary Material

You do not currently have access to this content.