We have prepared Ni-doped p-type skutterudites CeyFe4−xNixSb12 and systematically studied their thermoelectric properties. The lattice parameters of these skutterudites are found to be sensitive to both the Ni content and Ce-filling fraction. With increasing Ni content, the electrical conductivity decreases and the Seebeck coefficient increases, consistent with the expected decrease in hole concentration due to the extra electrons introduced by Ni. All Ni-doped samples possess similar band gap values. We also find that the Ni-doped CeyFe4−xNixSb12 system has electrical transport properties similar to those of Co-doped CeyFe4−xCoxSb12 system at a similar nominal hole concentration based on a simple charge counting. We do, however, find a pronounced bi-polar phenomenon in thermal conductivity that rapidly increases for Ni-doped samples when temperature is above 600 K. Importantly, Ni-doped samples have higher dimensionless thermoelectric figures of merit values than CeFe4Sb12 over the entire temperature range measured. Therefore, Ni doping is useful for improving the energy conversion efficiency in applications.

1.
L. D.
Chen
,
Z.
Xiong
, and
S. Q.
Bai
,
J. Inorg. Mater.
25
,
00561
(
2010
).
2.
G. A.
Slack
,
CRC Handbook of Thermoelectrics
(
CRC Press
,
Boca Raton, FL
,
1995
).
3.
D. T.
Morelli
and
G. P.
Meisner
,
J. Appl. Phys.
77
,
3777
(
1995
).
4.
B. C.
Sales
,
D.
Mandrus
, and
R. K.
Williams
,
Science
272
,
1325
(
1996
).
5.
L.
Nordström
and
D. J.
Singh
,
Phys. Rev. B
53
,
1103
(
1996
).
6.
P. F.
Qiu
,
J.
Yang
,
R. H.
Liu
,
X.
Shi
,
X. Y.
Huang
,
G. J.
Snyder
,
W.
Zhang
, and
L. D.
Chen
,
J. Appl. Phys.
109
,
063713
(
2011
).
7.
B. X.
Chen
,
J. H.
Xu
,
C.
Uher
,
D. T.
Morelli
,
G. P.
Meisner
, J-
P.
Fleurial
,
T.
Caillat
, and
A.
Borshchevsky
,
Phys. Rev. B
55
,
1476
(
1997
).
8.
D. T.
Morelli
,
G. P.
Meisner
,
B. X.
Chen
,
S. Q.
Hu
, and
C.
Uher
,
Phys. Rev. B
56
,
7376
(
1997
).
9.
X. F.
Tang
,
L. D.
Chen
,
T.
Goto
, and
T.
Hirai
,
J. Mater. Res.
16
,
837
(
2001
).
10.
D.
Bérardan
,
C.
Godart
,
E.
Alleno
,
E.
Leroy
, and
P.
Rogl
,
J. Alloys Comp.
350
,
30
(
2003
).
11.
X.
Tang
,
Q.
Zhang
,
L.
Chen
,
T.
Goto
, and
T.
Hirai
,
J. Appl. Phys.
97
,
093712
(
2005
).
12.
D. J.
Singh
and
M.-H.
Du
,
Phys. Rev. B
82
,
075115
(
2010
).
13.
L. D.
Chen
,
Proceedings of the 21st International Conference of Thermoelectrics
(
IEEE
, New York,
2002
), p.
42
, and references therein.
14.
X.
Shi
,
S.
Bai
,
L.
Xi
,
J.
Yang
,
W.
Zhang
,
L.
Chen
, and
J.
Yang
,
J. Mater. Res.
26
,
1746
(
2011
), and references therein.
15.
X.
Shi
,
J.
Yang
,
J. R.
Salvador
,
M. F.
Chi
,
J. Y.
Cho
,
H.
Wang
,
S. Q.
Bai
,
J. H.
Yang
,
W. Q.
Zhang
, and
L. D.
Chen
,
J. Am. Chem. Soc.
133
,
7837
(
2011
).
16.
G.
Rogl
,
A.
Grytsiv
,
E.
Bauer
,
P.
Rogl
, and
M.
Zehetbauer
,
Intermetallic
06
,
005
(
2009
).
17.
D. J.
Singh
and
I. I.
Mazin
,
Phys. Rev. B
56
,
1650
(
1997
).
18.
L.
Chapon
,
D.
Ravot
, and
J. C.
Tedenac
,
J. Alloys Comp.
299
,
68
(
2000
).
19.
T.
Morimura
and
M.
Hasaka
,
Scr. Mater.
48
,
495
(
2003
).
20.
R.
Viennois
,
D.
Ravot
,
J. C.
Tedenac
,
S.
Charar
, and
A.
Mauger
,
Mater. Sci. Eng. B
119
,
1
(
2005
).
21.
L.
Chapon
,
D.
Ravot
, and
J. C.
Tedenac
,
J. Alloys Comp.
282
,
58
(
1999
).
22.
D.
Bérardan
,
E.
Alleno
,
C.
Godart
,
M.
Puyet
,
B.
Lenoir
,
R.
Lackner
,
E.
Bauer
,
L.
Girard
, and
D.
Ravot
,
J. Appl. Phys.
98
,
033710
(
2005
).
23.
R. D.
Shannon
,
Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr
32
,
751
(
1976
).
24.
D.
Bérardan
,
E.
Alleno
,
C.
Godart
,
O.
Rouleau
, and
J.
Rodriguez-Carvajal
,
Mater. Res. Bull.
40
,
537
(
2005
).
25.
G. J.
Goldsmid
and
J. W.
Sharp
,
J. Electron. Mater.
28
,
869
(
1999
).
You do not currently have access to this content.