The kinetic energy distributions of photo-electrons emitted from gold surfaces under illumination by UV-light close to the threshold (photon energy in the order of the material work function) are measured and analyzed. Samples are prepared as chemically clean through Ar-ion sputtering and then exposed to atmosphere for variable durations before quantum yield measurements are performed after evacuation. During measurements, the bias voltage applied to the sample is varied and the resulting emission current measured. Taking the derivative of the current-voltage curve yields the energy distribution which is found to closely resemble the distribution of total energies derived by DuBridge for emission from a free electron gas. We investigate the dependence of distribution shape and width on electrode geometry and contaminant substances adsorbed from the atmosphere, in particular, to water and hydro-carbons. Emission efficiency increases initially during air exposure before diminishing to zero on a timescale of several hours, whilst subsequent annealing of the sample restores emissivity. A model fit function, in good quantitative agreement with the measured data, is introduced which accounts for the experiment-specific electrode geometry and an energy dependent transmission coefficient. The impact of large patch potential fields from contact potential drops between sample and sample holder is investigated. The total quantum yield is split into bulk and surface contributions which are tested for their sensitivity to light incidence angle and polarization. Our results are directly applicable to model parameters for the contact-free discharge system onboard the Laser Interferometer Space Antenna (LISA) Pathfinder spacecraft.

1.
K. T.
Compton
and
O. W.
Richardson
, “
XLV. The photoelectric effect. II
,”
Philos. Mag. Ser.
6
26
,
549
567
(
1913
).
2.
R. A.
Millikan
, “
A direct photoelectric determination of Planck’s “h”
,”
Phys. Rev.
7
,
355
388
(
1916
).
3.
R. H.
Fowler
, “
The analysis of photoelectric sensitivity curves for clean metals at various temperatures
,”
Phys. Rev.
38
,
45
56
(
1931
).
4.
L. A.
DuBridge
, “
A further experimental test of Fowler’s theory of photoelectric emission
,”
Phys. Rev.
39
,
108
118
(
1932
).
5.
L. A.
DuBridge
, “
Theory of the energy distribution of photoelectrons
,”
Phys. Rev.
43
,
727
741
(
1933
).
6.
L. A.
DuBridge
and
R. C.
Hergenrother
, “
The effect of temperature on the energy distribution of photoelectrons. I. Normal energies
,”
Phys. Rev.
44
,
861
865
(
1933
).
7.
W. W.
Roehr
, “
The effect of temperature on the energy distribution of photoelectrons. II. Total energies
,”
Phys. Rev.
44
,
866
871
(
1933
).
8.
W. E.
Spicer
, “
Photoemissive, photoconductive, and optical absorption studies of alkali-antimony compounds
,”
Phys. Rev.
112
,
114
122
(
1958
).
9.
C. N.
Berglund
and
W. E.
Spicer
, “
Photoemission studies of copper and silver: Theory
,”
Phys. Rev.
136
,
A1030
A1044
(
1964
).
10.
S. L.
Hulbert
,
P. D.
Johnson
,
N. G.
Stoffel
, and
N. V.
Smith
, “
Unoccupied bulk and surface states on Ag(111) studied by inverse photoemission
,”
Phys. Rev. B
32
,
3451
3455
(
1985
).
11.
P.
Hofmann
and
K.
Kambe
, “
Analysis of direct transitions and surface-state features observed in photoemission from clean Al(111)
,”
Phys. Rev. B
30
,
3028
3038
(
1984
).
12.
W.
Drube
and
F. J.
Himpsel
, “
Resonant inverse photoemission via plasmons
,”
Phys. Rev. Lett.
60
,
140
143
(
1988
).
13.
S.
Suto
,
K.-D.
Tsuei
,
E. W.
Plummer
, and
E.
Burstein
, “
Surface-plasmon energy and dispersion on Ag single crystals
,”
Phys. Rev. Lett.
63
,
2590
2593
(
1989
).
14.
V. M.
Shalaev
, “
Electron escape and photoemission in the threshold region
,”
Phys. Rev. B
49
,
1437
1440
(
1994
).
15.
T.
Ziegler
,
W.
Fichter
,
M.
Schulte
, and
S.
Vitale
, “
Principles, operations, and expected performance of the LISA Pathfinder charge management system
,”
J. Phys.: Conf. Ser.
154
,
012009
(
2009
).
16.
T.
Bell
, “
Gravitational astronomy: Hearing the heavens
,”
Nature
452
,
18
21
(
2008
).
17.
I.
Biswas
,
F.
Erfurt
,
M.
Schulze
,
G.
Hechenblaikner
, and
T.
Ziegler
, “
An apparatus for the measurement of quantum yield of coated gold samples
” (unpublished).
18.
D.
Cahen
and
A.
Kahn
, “
Electron energetics at surfaces and interfaces: Concepts and experiments
,”
Adv. Mater.
15
,
271
277
(
2003
).
19.
T. H.
DiStefano
and
D. T.
Pierce
, “
Energy resolution of the photoemission analyzer
,”
Rev. Sci. Instrum.
41
,
180
188
(
1970
).
20.
Z.
Pei
and
C.
Neil Berglund
, “
Angular distribution of photoemission from gold thin films
,”
Jpn. J. Appl. Phys.
, Part 2
41
,
L52
L54
(
2002
).
21.
A. G.
Hill
, “
The energy distribution of photoelectrons from sodium
,”
Phys. Rev.
53
,
184
193
(
1938
).
22.
L.
Nordheim
, “
Zur Theorie der thermischen Emission und der Reflexion von Elektronen an Metallen
,”
Z. Phys. A: Hadrons Nucl.
46
,
833
855
(
1928
), ISSN 0939-7922.
23.
E. U.
Condon
and
P. M.
Morse
, “
Quantum mechanics of collision processes I. scattering of particles in a definite force field
,”
Rev. Mod. Phys.
3
,
43
88
(
1931
).
24.
S. C.
Fain
and
J. M.
McDavid
, “
Work-function variation with alloy composition: Ag-Au
,”
Phys. Rev. B
9
,
5099
5107
(
1974
).
25.
M. A.
Henderson
, “
The interaction of water with solid surfaces: Fundamental aspects revisited
,”
ChemInform
33
,
228
228
(
2002
), ISSN 1522-2667.
26.
A.
Kadyshevitch
and
R.
Naaman
, “
Photoelectron transmission through organized organic thin films
,”
Phys. Rev. Lett.
74
,
3443
3446
(
1995
).
27.
H.
Cercellier
,
C.
Didiot
,
Y.
Fagot-Revurat
,
B.
Kierren
,
L.
Moreau
,
D.
Malterre
, and
F.
Reinert
, “
Interplay between structural, chemical, and spectroscopic properties of Ag/Au(111) epitaxial ultrathin films: A way to tune the Rashba coupling
,”
Phys. Rev. B
73
,
195413
(
2006
).
28.
R.
Naaman
,
A.
Haran
,
A.
Nitzan
,
D.
Evans
, and
M.
Galperin
, “
Electron transmission through molecular layers
,”
J. Phys. Chem. B
102
,
3658
3668
(
1998
).
29.
W. V.
Houston
, “
The surface photoelectric effect
,”
Phys. Rev.
52
,
1047
1053
(
1937
).
30.
M. J.
Buckingham
, “
The surface photoelectric effect
,”
Phys. Rev.
80
,
704
708
(
1950
).
31.
P. A.
Anderson
, “
Work function of gold
,”
Phys. Rev.
115
,
553
554
(
1959
).
32.
A. H.
Sommer
,
Photoemissive Materials: Preparation, Properties, Use
(
Wiley
,
1968
).
33.
B.
Feuerbacher
and
B.
Fitton
, “
Experimental investigation of photoemission from satellite surface materials
,”
J. Appl. Phys.
43
,
1563
(
1972
).
34.
L. M.
Rangarajan
and
G. K.
Bhide
, “
Photoemission energy distribution studies of gold thin films under UV excitation by a photoelectron spectroscopic method
,”
Vacuum
30
,
515
(
1980
).
35.
R. M.
Broudy
, “
Vectorial photoelectric effect
,”
Phys. Rev. B
3
,
3641
3651
(
1971
).
36.
E.
Pedersoli
,
C. M. R.
Greaves
,
W.
Wan
,
C.
Coleman-Smith
,
H. A.
Padmore
,
S.
Pagliara
,
A.
Cartella
,
F.
Lamarca
,
G.
Ferrini
,
G.
Galimberti
,
M.
Montagnese
,
S.
dal Conte
, and
F.
Parmigiani
, “
Surface and bulk contribution to Cu(111) quantum efficiency
,”
Appl. Phys. Lett.
93
,
183505
(
2008
).
37.
J.
Vig
, UV/OZONE Cleaning of Surfaces, Research and Development Technical Report SLCET-TR-86-6, US Army Laboratory Command, Fort Monmouth,
1986
.
You do not currently have access to this content.