We have studied the oxidation of magnetite to Fe2O3 in an electrolytic cell in which the anode is magnetite and the cathode is platinum. We report cyclic voltammagram data consistent with the hypothesis that magnetite, without oxygen gas production but with hydrogen gas production at the cathode, is occurring. The reaction occurs at a potential at the anode of about 0.3 V vs SCE in 1 M NaOH electrolyte, consistent with colloid experiments which also estimated the equilibrium potential of the hypothesized reaction. Electrode characterization results using BET, XEDS, and macroscopic volume and mass measurements are reported, as well as the measurements of the amount of hydrogen gas generated per unit current. The quantity of gas generated is also consistent with our hypothesis concerning the electrode chemistry. Some samples exhibit evidence of two oxidation reactions occurring at the anode and a possible interpretation of these is also discussed. These results suggest the use of magnetite as an anode in a cell electrolysing water to produce hydrogen gas and Fe2O3. In such an electrolyser, the electrical energy cost of producing hydrogen gas could be significantly lower than the cost in a standard electrolyser. The measured steady state currents, equivalent to about 400 mA/g of magnetite, are too low to make a practical electrolyser. We briefly discuss several ways in which the currents might be increased to the levels required.

1.
D.
Talbot
, “
Lifeline for Renewable Power
,” Technology Review, January/February 2009, pp.
40
47
.
2.
R. G. M.
Crockett
,
M.
NewBorough
, and
D. J.
Highgate
,
Sol. Energy
61
,
291
(
1997
).
3.
O.
Khaselev
and
J. A.
Turner
,
Science
280
,
425
(
1998
).
4.
B.
Kroposki
,
U.S. Department of Energy-Hydrogen Program 2005, Annual Progress Report
, edited by
H.
Kung
, Chap. H.3, see http://www.hydrogen.energy.gov/annual_progress05_production.html (accessed September 29,
2011
).
5.
C.
Cropley
and
T.
Norman
, “A low cost high pressure hydrogen generator,” Final Report on DOE Cooperative Agreement No. DE-FG36-04GOI3029, 2008.
6.
Y.
Surendranath
,
M.
Dinca
, and
D. G.
Nocera
,
J. Am. Chem. Soc.
131
,
2615
2620
(
2009
).
7.
S.
Lalvani
and
M.
Shami
,
Int. J. Hydrogen Energy
10
,
447
(
1985
).
8.
M. S.
Seehra
and
S.
Bollineni
,
Int. J. Hydrogen Energy
34
,
6078
(
2009
).
9.
S.
Takenda
,
K.
Nomura
,
N.
Hanaizumi
, and
K.
Otsuka
,
Appl. Catal.
282
,
333
(
2005
).
10.
J. R.
Hansen
, U.S. Patent 4,455,152 (
1984
)
11.
S. C.
Pang
,
S. F.
Chin
, and
M. A.
Anderson
,
J. Colloid Interface Sci.
311
,
94
(
2007
).
12.
14.
Acquired from http://www.magneticsand.com/and from Sigma Aldrich, Case No. 1317-61-9, Part No. 637106-25g.
15.
Y.-S.
Bae
,
O.
Yazayd’n
, and
R.
Snurr
,
Langmuir
26
,
5475
5483
(
2010
).
16.
M.
Orlik
,
J. Electroanal. Chem.
434
,
139
(
1997
).
17.
A.
Atkinson
,
M. L.
O’Dwyer
, and
R. I.
Taylor
,
J. Mater. Sci.
18
,
2371
(
1983
).
18.
I.
Davie
and
A. J. E.
Welch
,
Trans. Faraday Soc.
52
,
1642
(
1956
).
19.
J.
Huber aus Wabern
, “
Zur Natur von γ-Fe2O3
,” Inaugural dissertation (
Justus-Leibig Universitat Giessen
,
2004
).
20.
R. A.
Robinson
and
R. H.
Stokes
,
Electrolyte Solutions
, 2nd ed. (
Academic
,
New York
,
1959
), Appendix 6.2.
21.
A. J.
Naldrett
,
Magmatic Sulfide Deposits
, Oxford Monographs on Geology and Geophysics No. 14 (
Clarendon
,
Oxford
,
1989
).
23.
A.
Vazquez
,
J.
Arias
, and
R. M.
Sanchez
,
Eur. J. Phys.
27
,
667673
(
2006
).
24.
G.
Schiller
and
V.
Borck
,
Int. J. Hydrogen Energy
17
,
261
273
(
1992
).
25.
G.
Schiller
,
R.
Henne
,
P.
Mohr
, and
V.
Peinecke
,
Int. J. Hydrogen Energy
23
,
761
765
(
1998
).
26.
A.
Bard
and
L.
Faulkner
,
Electroanalytical Methods
(
Wiley
,
NY
,
1980
), p.
96
.
You do not currently have access to this content.