The performance of germanium and silicon inversion-mode and junctionless nanowire field-effect transistors are investigated using three-dimensional quantum mechanical simulations in the ballistic transport regime and within the framework of effective-mass theory for different channel materials and orientations. Our study shows that junctionless nanowire transistors made using n-type Ge or Si nanowires as a channel material are more immune to short-channel effects than conventional inversion-mode nanowire field-effect transistors. As a result, these transistors present smaller subthreshold swing, less drain-induced barrier-lowering, lower source-to-drain tunneling, and higher Ion/Ioff ratio for the same technology node and low standby power technologies. We also show that the short-channel characteristics of Ge and Si junctionless nanowire transistors, unlike the inversion-mode nanowire transistors, are very similar. The results are explained through a detailed analysis on the effect of the channel crystallographic orientation, effective masses, and dielectric constant on electrical characteristics.

1.
See http://public.itrs.net/ for information about the International Technology Roadmap for Semiconductors,
2010
.
2.
J. P.
Colinge
, “
Multi-gate SOI MOSFETs
,”
Microelectron. Eng.
84
,
2071
2076
(
2007
).
3.
N.
Singh
,
A.
Agarwal
,
L. K.
Bera
,
T. Y.
Liow
,
R.
Yang
,
S. C.
Rustagi
,
C. H.
Tung
,
R.
Kumar
,
G. Q.
Lo
,
N.
Balasubramanian
, and
D. L.
Kwong
, “
High-performance fully depleted silicon nanowire (diameter ≤ 5 nm) gate-all-around CMOS devices
,”
IEEE Electron Device Lett.
27
,
383
386
(
2006
).
4.
K.
Saraswat
,
C. O.
Chui
,
T.
Krishnamohan
,
D.
Kim
,
A.
Nayfeh
, and
A.
Pethe
, “
High performance germanium MOSFETs
,”
Mater. Sci. Eng., B
135
,
242
249
(
2006
).
5.
K. C.
Saraswat
,
C. O.
Chui
,
T.
Krishnamohan
,
A.
Nayfeh
, and
P.
McIntyre
, “
Ge based high performance nanoscale MOSFETs
,”
Microelectron. Eng.
80
,
15
21
(
2005
).
6.
R.
Chau
,
S.
Datta
,
M.
Doczy
,
B.
Doyle
,
J.
Kavalieros
, and
M.
Metz
, “
High-kappa/metal-gate stack and its MOSFET characteristics
,”
IEEE Electron Device Lett.
25
,
408
410
(
2004
).
7.
J.-P.
Colinge
,
C.-W.
Lee
,
A.
Afzalian
,
N. D.
Akhavan
,
R.
Yan
,
I.
Ferain
,
P.
Razavi
,
B.
O’Neill
,
A.
Blake
,
M.
White
,
A.-M.
Kelleher
,
B.
McCarthy
, and
R.
Murphy
, “
Nanowire transistors without junctions
,”
Nat. Nanotechnol.
5
,
225
229
(
2010
).
8.
A.
Kranti
,
R.
Yan
,
C. W.
Lee
,
I.
Ferain
,
R.
Yu
,
N. D.
Akhavan
,
P.
Razavi
, and
J. P.
Colinge
, “
Junctionless nanowire transistor (JNT): Properties and design guidelines
,” in
Solid-State Device Research Conference (ESSDERC), 2010 Proceedings of the European
(
2010
), pp.
357
360
.
9.
L.
Ansari
,
B.
Feldman
,
G.
Fagas
,
J.-P.
Colinge
, and
J. C.
Greer
, “
Simulation of junctionless Si nanowire transistors with 3 nm gate length
,”
Appl. Phys. Lett.
97
,
062105
(
2010
).
10.
C.-W.
Lee
,
I.
Ferain
,
A.
Afzalian
,
R.
Yan
,
N. D.
Akhavan
,
P.
Razavi
, and
J.-P.
Colinge
, “
Performance estimation of junctionless multigate transistors
,”
Solid-State Electron.
54
,
97
103
(
2010
).
11.
J.-P.
Raskin
,
J.-P.
Colinge
,
I.
Ferain
,
A.
Kranti
,
C.-W.
Lee
,
N. D.
Akhavan
,
R.
Yan
,
P.
Razavi
, and
R.
Yu
, “
Mobility improvement in nanowire junctionless transistors by uniaxial strain
,”
Appl. Phys. Lett.
97
,
042114
(
2010
).
12.
J.-T.
Park
,
J. Y.
Kim
,
C.-W.
Lee
, and
J.-P.
Colinge
, “
Low-temperature conductance oscillations in junctionless nanowire transistors
,”
Appl. Phys. Lett.
97
,
172101
(
2010
).
13.
D.
Jang
,
J. W.
Lee
,
C.-W.
Lee
,
J.-P.
Colinge
,
L.
Montes
,
J. I.
Lee
,
G. T.
Kim
, and
G.
Ghibaudo
, “
Low-frequency noise in junctionless multigate transistors
,”
Appl. Phys. Lett.
98
,
133502
(
2011
).
14.
J.-P.
Colinge
,
C.-W.
Lee
,
I.
Ferain
,
N. D.
Akhavan
,
R.
Yan
,
P.
Razavi
,
R.
Yu
,
A. N.
Nazarov
, and
R. T.
Doria
, “
Reduced electric field in junctionless transistors
,”
Appl. Phys. Lett.
96
,
073510
(
2010
).
15.
C.-W.
Lee
,
A.
Borne
,
I.
Ferain
,
A.
Afzalian
,
R.
Yan
,
N.
Dehdashti Akhavan
,
P.
Razavi
, and
J. P.
Colinge
, “
High-temperature performance of silicon junctionless MOSFETs
,”
IEEE Trans. Electron Devices
57
,
620
625
(
2010
).
16.
R. T.
Doria
,
M. A.
Pavanello
,
R. D.
Trevisoli
,
M.
de Souza
,
L.
Chi-Woo
,
I.
Ferain
,
N. D.
Akhavan
,
Y.
Ran
,
P.
Razavi
,
Y.
Ran
,
A.
Kranti
, and
J.
Colinge
, “
Junctionless multiple-gate transistors for analog applications
,”
IEEE Trans. Electron Devices
58
,
2511
2519
(
2011
).
17.
C.
Seongjae
,
K.
Kyung Rok
,
P.
Byung-Gook
, and
K.
In Man
, “
RF performance and small-signal parameter extraction of junctionless silicon nanowire MOSFETs
,”
IEEE Trans. Electron Devices
58
,
1388
1396
(
2011
).
18.
P.
Razavi
,
N.
D-Akhavan
,
R.
Yu
,
G.
Fagas
,
I.
Ferain
, and
J.-P.
Colinge
, “
Investigation of short-channel effects in junctionless nanowire transistors
,” paper presented at the
Proceedings of the International Conference Solid States Devices and Materials (SSDM)
,
2011
.
19.
M.
Bescond
,
N.
Cavassilas
,
K.
Kalna
,
K.
Nehari
,
L.
Raymond
,
J. L.
Autran
,
M.
Lannoo
, and
A.
Asenov
, “
Ballistic transport in Si, Ge, and GaAs nanowire MOSFETs
,”
IEEE Int.Tech. Dig. - Int. Electron Devices Meet.
2005
,
526
529
.
20.
W.
Jing
,
A.
Rahman
,
G.
Klimeck
, and
M.
Lundstrom
, “
Bandstructure and orientation effects in ballistic Si and Ge nanowire FETs
,”
IEEE Int. Tech. Dig. - Int. Electron Devices Meet.
2005
,
4
and 533.
21.
D.
Kim
,
T.
Krishnamohan
,
Y.
Nishi
, and
K. C.
Saraswat
, “
Band to band tunneling limited off state current in ultra-thin body double gate FETs with high mobility materials: III-V, Ge and strained Si/Ge
,” in
2006 International Conference on Simulation of Semiconductor Processes and Devices
(
2006
), pp.
389
392
.
22.
S.
Gundapaneni
,
M.
Bajaj
,
R. K.
Pandey
,
K. V. R. M.
Murali
,
S.
Ganguly
, and
A.
Kottantharayil
, “
Effect of band-to-band tunneling on junctionless transistors
,”
IEEE Trans. Electron Devices
59
,
1023
1029
(
2012
).
23.
K.
Nehari
,
N.
Cavassilas
,
J. L.
Autran
,
M.
Bescond
,
D.
Munteanu
, and
M.
Lannoo
, “
Influence of band structure on electron ballistic transport in silicon nanowire MOSFET’s: An atomistic study
,”
Solid-State Electron.
50
,
716
721
(
2006
).
24.
S.
Datta
, “
Nanoscale device modeling: The Green’s function method
,”
Superlattices Microstruct.
28
,
253
278
(
2000
).
25.
J.
Wang
,
E.
Polizzi
, and
M.
Lundstrom
, “
A three-dimensional quantum simulation of silicon nanowire transistors with the effective-mass approximation
,”
J. Appl. Phys.
96
,
2192
2203
(
2004
).
26.
See http://comsol.com for information about the Comsol Multiphysics Software.
27.
M.
Bescond
,
N.
Cavassilas
, and
M.
Lannoo
, “
Effective-mass approach for n-type semiconductor nanowire MOSFETs arbitrarily oriented
,”
Nanotechnology
18
,
255201
(
2007
).
28.
S.
Datta
,
Quantum Transport: Atom to Transistor
(
Cambridge University Press
,
2005
).
29.
R. H.
Yan
,
A.
Ourmazd
, and
K. F.
Lee
, “
Scaling the Si MOSFET: From bulk to SOI to bulk
,”
IEEE Trans. Electron Devices
39
,
1704
1710
(
1992
).
30.
C.-W.
Lee
,
S.-R.-N.
Yun
,
C.-G.
Yu
,
J.-T.
Park
, and
J.-P.
Colinge
, “
Device design guidelines for nano-scale MuGFETs
,”
Solid-State Electron.
51
,
505
510
(
2007
).
31.
J.-P.
Colinge
, “
Multiple-gate SOI MOSFETs
,”
Solid-State Electron.
48
,
897
905
(
2004
).
32.
J.-P.
Colinge
,
A.
Kranti
,
R.
Yan
,
I.
Ferain
,
N. D.
Akhavan
,
P.
Razavi
,
C.-W.
Lee
,
R.
Yu
, and
C.
Colinge
, “
A Simulation comparison between junctionless and inversion-mode MuGFETs
,”
ECS Trans.
35
,
63
72
(
2011
).
33.
P.
Chan-Hoon
,
K.
Myung-Dong
,
K.
Ki-Hyun
,
S.
Chang-Woo
,
B.
Chang Ki
,
J.
Yoon-Ha
, and
L.
Jeong-Soo
, “
Comparative study of fabricated junctionless and inversion-mode nanowire FETs
,” in
2011 69th Annual Device Research Conference (DRC)
(
2011
), pp.
179
180
.
You do not currently have access to this content.