Porous ceramic water filters (CWFs), produced by sintering a mixture of clay and a combustible material (such as woodchips), are often used in point-of-use water filtration systems that occlude microbes by size exclusion. They are also coated with colloidal silver, which serves as a microbial disinfectant. However, the adhesion of microbes to porous clay surfaces and colloidal silver coated clay surfaces has not been studied. This paper presents the results of atomic force microscopy (AFM) measurements of the adhesion force between Escherichia coli bacteria, colloidal silver, and porous clay-based ceramic surfaces. The adhesion of silver and copper nanoparticles is also studied in control experiments on these alternative disinfectant materials. The adhesive force between the wide range of possible bi-materials was measured using pull-off measurements during force microscopy. These were combined with measurements of AFM tip radii/substrate roughness that were incorporated into adhesion models to obtain the adhesion energies for the pair wise interaction. Of the three antimicrobial metals studied, the colloidal silver had the highest affinity for porous ceramic surface (125 ± 32 nN and ∼0.29 J/m2) while the silver nanoparticles had the highest affinity for E. coli bacteria (133 ± 21 nN and ∼0.39 J/m2). The implications of the results are then discussed for the design of ceramic water filter that can purify water by adsorption and size exclusion.

1.
UNICEF, United Nations Children’s Fund (UNICEF), New York (
2008
). Available at: http://www.unicef.org/wash/files/WQ_Handbook_final_signed_16_April_2008.pdf
2.
WHO/UNICEF, “
Progress on Drinking Water and Sanitation: World Health Organization and United Nations Children’s Fund Joint Monitoring Programme for Water Supply and Sanitation
,” (
2010
). Available at: http://www.who.int/water_sanitation_health/publications/9789241563956/en/index.html
3.
T. N.
Kim
,
Q. L.
Feng
,
J. O.
Kim
,
J.
Wu
,
H.
Wang
,
G. C.
Chen
, and
F. Z.
Cui
,
J. Mater. Sci. Mater. Med.
9
,
129
(
1998
).
4.
A. B.
Lansdown
,
J. Wound Care
11
,
125
(
2002
).
5.
A.
Top
and
S.
Ulku
,
Appl. Clay Sci.
27
,
13
(
2004
).
6.
K. Y.
Yoon
,
J. H.
Byeon
,
J. H.
Park
, and
J.
Hwang
,
Sci. Total Environ.
373
,
572
(
2007
).
7.
J. P.
Ruparelia
,
A. K.
Chatterjee
,
S. P.
Duttagupta
, and
S.
Mukherji
,
Acta Biomater.
4
,
707
(
2008
).
8.
L.
Yang
,
X.
Ning
,
Q.
Xiao
,
K.
Chen
, and
H.
Zhou
,
J. Biomed. Mater. Res., B: Appl. Biomater.
81
,
50
(
2007
).
9.
P.
Jain
and
T.
Pradeep
,
Biotechnol. Bioeng.
90
,
59
(
2005
).
10.
A.
Esteban-Cubillo
,
C.
Pecharroman
,
E.
Aguilar
,
J.
Santaren
, and
J. S.
Moya
,
J. Mater. Sci.
41
,
5208
(
2006
).
11.
A.
Panacek
,
L.
Kvitek
,
R.
Prucek
,
M.
Kolar
,
R.
Vecerova
,
N.
Pizurova
,
V. K.
Sharma
,
T.
Nevecna
, and
R.
Zboril
,
J. Phys. Chem. B
110
,
16248
(
2006
).
12.
S.
Pal
,
Y. K.
Tak
, and
J. M.
Song
,
Appl. Environ. Microbiol.
73
,
1712
(
2007
).
13.
J. R.
Morones
,
J. L.
Elechiguerra
,
A.
Camacho
,
K.
Holt
,
J. B.
Kouri
,
J. T.
Ramirez
, and
M. J.
Yacaman
,
Nanotechnology
16
,
2346
(
2005
).
14.
I.
Sondi
and
B.
Salopek-Sondi
,
J. Colloid Interface Sci.
275
,
177
(
2004
).
15.
K. H.
Cho
,
J. E.
Park
,
T.
Osaka
, and
S. G.
Park
,
Electrochim. Acta
51
,
956
(
2005
).
16.
I. E.
Alcamo
,
Fundamentals of Microbiology
, 5th ed. (
Benjamin Cummings
,
Menlo Park, California
,
1997
).
17.
Q. L.
Feng
,
J.
Wu
,
G. Q.
Chen
,
F. Z.
Cui
,
T. N.
Kim
, and
J. O.
Kim
,
J. Biomed. Mater. Res.
52
,
662
(
2000
).
18.
V. A.
Oyanedel-Craver
and
J. A.
Smith
,
Environ. Sci. Technol.
42
,
927
(
2008
).
19.
S. N.
Magonov
and
M.-H.
Whangbo
,
Surface Analysis with STM and AFM: Experimental and Theoretical Aspects of Image Analysis
(
VCH, Weinheim
,
New York
,
1996
).
20.
R.
Wiesendanger
,
Scanning Probe Microscopy and Spectroscopy: Methods and Applications
(
Cambridge University Press
,
Cambridge
,
1994
).
21.
C. B.
Prater
,
P. G.
Maivald
,
K. J.
Kjoller
, and
M. G.
Heaton
, Probing Nanoscale Forces with the Atomic Force Microscopy. Application Note. Digital Instruments/Veeco Metrology Group. pp. 1–14. (1995).
22.
P. G.
Hartley
,
F.
Grieser
,
P.
Mulvaney
, and
G. W.
Stevens
,
Langmuir
15
,
7282
(
1999
).
23.
H. J.
Butt
,
B.
Cappella
, and
M.
Kappl
,
Surf. Sci. Rep.
59
,
1
(
2005
).
24.
J.
Meng
,
A.
Orana
,
T.
Tan
,
K.
Wolf
,
N.
Rahbar
,
H.
Li
,
G.
Papandreou
,
C.
Maryanoff
, and
W.
Soboyejo
,
J. Mater. Res.
25
,
641
(
2010
).
25.
N.
Rahbar
,
K.
Wolf
,
A.
Orana
,
R.
Fennimore
,
Z.
Zong
,
J.
Meng
,
G.
Papandreou
,
C.
Maryanoff
, and
W.
Soboyejo
,
J. Appl. Phys.
104
,
103533
(
2008
).
26.
P.
Hinterdorfer
,
G.
Schutz
,
F.
Kienberger
, and
H.
Schindler
,
J. Biotechnol.
82
,
25
(
2001
).
27.
V.
Dupres
,
F. D.
Menozzi
,
C.
Locht
,
B. H.
Clare
,
N. L.
Abbott
,
S.
Cuenot
,
C.
Bompard
,
D.
Raze
, and
Y. F.
Dufrene
,
Nat. Methods
2
,
515
(
2005
).
28.
E. P.
Wojcikiewicz
,
X.
Zhang
, and
V. T.
Moy
,
Biol. Proced. Online
6
,
1
(
2004
).
29.
J.
Meng
,
E.
Paetzell
,
A.
Bogorad
, and
W. O.
Soboyejo
,
J. Appl. Phys.
107
,
114301
(
2010
).
30.
F.
Li
,
S. D.
Redick
,
H. P.
Erickson
, and
V. T.
Moy
,
Biophys. J.
84
,
1252
(
2003
).
31.
A.
Razatos
,
Y. L.
Ong
,
M. M.
Sharma
, and
G.
Georgiou
,
J. Biomater. Sci., Polym. Ed.
9
,
1361
(
1998
).
32.
Y. L.
Ong
,
A.
Razatos
,
G.
Georgiou
, and
M. M.
Sharma
,
Langmuir
15
,
2719
(
1999
).
33.
S. K.
Lower
,
C. J.
Tadanier
, and
M. F.
Hochella
,
Geochim. Cosmochim. Acta
64
,
3133
(
2000
).
34.
X.
Li
and
B. E.
Logan
,
Langmuir
20
,
8817
(
2004
).
35.
T.
Cao
,
H. Y.
Tang
,
X. M.
Liang
,
A. F.
Wang
,
G. W.
Auner
,
S. O.
Salley
, and
K. Y. S.
Ng
,
Biotechnol. Bioeng.
94
,
167
(
2006
).
36.
M. B.
Viani
,
T. E.
Schaffer
,
A.
Chand
,
M.
Rief
,
H. E.
Gaub
, and
P. K.
Hansma
,
J. Appl. Phys.
86
,
2258
(
1999
).
37.
N.
Kobayashi
,
Y. J.
Li
,
Y.
Naitoh
,
M.
Kageshima
, and
Y.
Sugawara
,
Appl. Phys. Lett.
97
,
011906
(
2010
).
38.
V.
Shahin
,
Y.
Ludwig
,
C.
Schafer
,
D.
Nikova
, and
H.
Oberleithner
,
J. Cell Sci.
118
,
2881
(
2005
).
39.
F. M.
Serry
, “Improving the accuracy of AFM force measurements: The thermal tune solution to the cantilever spring constant problem,” (Application Notes. Veeco Instrument Inc.: Santa Barbara,
2005
), Vol. AN90, pp. 1–4.
40.
T.
Tong
,
B.
Babatope
,
S.
Admassie
,
J.
Meng
,
O.
Akwogu
,
W.
Akande
, and
W. O.
Soboyejo
,
J. Appl. Phys.
106
,
083708
(
2009
).
41.
F. L.
Leite
and
P. S. P.
Herrmann
,
J. Adhesion Sci. Technol.
19
,
365
(
2005
).
42.
B. V.
Derjaguin
,
V. M.
Muller
, and
Y. P.
Toporov
,
Prog. Surf. Sci.
45
,
131
(
1994
).
43.
K. L.
Johnson
,
K.
Kendall
, and
A. D.
Roberts
,
Proc. R. Soc. London, Ser. A
324
,
301
(
1971
).
44.
D.
Tabor
,
J. Colloid Interface Sci.
58
,
2
(
1977
).
45.
46.
R. W.
Carpick
,
D. F.
Ogletree
, and
M.
Salmeron
,
J. Colloid Interface Sci.
211
,
395
(
1999
).
47.
I.
Yakub
,
A.
Plappally
,
M.
Leftwich
,
K.
Malatesta
,
K. C.
Friedman
,
S.
Obwoya
,
F.
Nyongesa
,
A. H.
Maiga
,
A. B. O.
Soboyejo
, and
W.
Soboyejo
, “Porosity and Filtration Characteristics of Frustum-Shaped Ceramic Water Filters. Journal of Environmental Engineering” (submitted).
48.
K. V.
Wolf
,
Z.
Zong
,
J.
Meng
,
A.
Orana
,
N.
Rahbar
,
K. M.
Balss
,
G.
Papandreou
,
C. A.
Maryanoff
, and
W.
Soboyejo
,
J. Biomed. Mater. Res. Part A
87
,
272
(
2008
).
49.
B. J.
Bachmann
,
Bacteriol. Rev.
36
,
525
(
1972
).
50.
J. H.
Miller
,
Experiments in Molecular Genetics
(
Cold Spring Harbor Laboratory
,
Cold Spring Harbor, N.Y.
,
1972
).
51.
B.
Bhushan
,
Handbook of Micro/Nanotribology
(
CRC
,
Boca Raton
,
1995
).
52.
I.
Sondi
,
D. V.
Goia
, and
E.
Matijevic
,
J. Colloid Interface Sci.
260
,
75
(
2003
).
53.
Argenol-Laboratories. Colloidal Silver. Accessed on January 5, 2011. Avaliable at: http://www.laboratorios-argenol.com/fi-colargoli.htm (
2011
).
54.
R.
Jones
,
H. M.
Pollock
,
J. A. S.
Cleaver
, and
C. S.
Hodges
,
Langmuir
18
,
8045
(
2002
).
55.
A.
Wadhera
and
M.
Fung
,
Dermatol. Online J.
11
,
12
(
2005
).
You do not currently have access to this content.