Aluminum thin films are known for their extremely rough surface, which is detrimental for applications such as molecular electronics and photonics, where protrusions cause electrical shorts or strong scattering. We achieved atomically flat Al films using a highly non-equilibrium approach. Ultra-fast thermal deposition (UFTD), at rates >10 nm/s, yields RMS roughness of 0.4 to 0.8 nm for 30–50 nm thick Al films on variety of substrates. For UFTD on Si(111) substrates, the top surface follows closely the substrate topography (etch pits), indicating a 2D, layer-by-layer growth. The Al film is a mixture of (100) and (111) grains, where the latter are commensurate with the in-plane orientation of the underlying Si (epitaxy). We show the use of these ultra-smooth Al films for highly reproducible charge-transport measurements across a monolayer of alkyl phosphonic acid as well as for plasmonics applications by directly patterning them by focused ion beam to form a long-range ordered array of holes. UFTD is a one-step process, with no need for annealing, peeling, or primer layers. It is conceptually opposite to high quality deposition methods, such as MBE or ALD, which are slow and near-equilibrium processes. For Al, though, we find that limited diffusion length (and good wetting) is critical for achieving ultra-smooth thin films.

1.
S.
Biring
,
K.-T.
Tsai
,
U. K.
Sur
, and
Y.-L.
Wang
,
Nanotechnology
19
,
015304
(
2008
).
2.
Y.
Jin
,
N.
Friedman
,
M.
Sheves
, and
D.
Cahen
,
Langmuir
24
,
5622
5626
(
2008
).
3.
E. A.
Weiss
,
R. C.
Chiechi
,
G. K.
Kaufman
,
J. K.
Kriebel
,
Z.
Li
,
M.
Duati
,
M. A.
Rampi
, and
G. M.
Whitesides
,
J. Am. Chem. Soc.
129
,
4336
(
2007
).
4.
C. W.
Miller
,
Z.-P.
Li
,
J.
Akerman
, and
I. K.
Schuller
,
Appl. Phys. Lett.
90
,
043513
(
2007
).
5.
P.
Nagpal
,
N. C.
Lindquist
,
S.-H.
Oh
, and
D. J.
Norris
,
Science
325
,
594
597
(
2009
).
6.
Z.
Sun
,
C.
Cao
,
L.
Cao
,
P.
Liang
,
X.
Huang
, and
X.
Song
,
Vacuum
84
,
828
(
2010
).
7.
Y.
Vaynzof
,
T. J.
Dennes
,
J.
Schwartz
, and
A.
Kahn
,
Appl. Phys. Lett.
93
,
103305
(
2008
).
8.
E. D.
Palik
,
Handbook of Optical Constants of Solids
(
Academic
,
London
,
1985
).
9.
R.
Stumpf
and
M.
Scheffler
,
Phys. Rev. B
53
,
4958
4973
(
1996
).
10.
R. M.
Groger
and
M. R.
Barczewski
,
Surf. Interface Anal.
32
,
154
160
(
2001
).
11.
N.
Joshi
,
A. K.
Debnath
,
D. K.
Aswal
,
K. P.
Muthe
,
M. S.
Kumar
,
S. K.
Gupta
, and
J. V.
Yakhmi
,
Vacuum
79
,
178
185
(
2005
).
12.
Z.
Zhang
and
M. G.
Lagally
,
Science
276
,
377
(
1997
).
13.
T.-C.
Shen
,
C.
Wang
, and
J. R.
Tucker
,
Phys. Rev. Lett.
78
,
1271
1274
(
1997
).
14.
D. P.
Adams
,
T. M.
Mayer
, and
B. S.
Swartzentruber
,
J. Appl. Phys.
83
,
4690
4694
(
1998
).
15.
D. L.
Rode
,
V. R.
Gaddam
, and
J. H.
Yi
,
J. Appl. Phys.
102
,
024303
(
2007
).
16.
A. E.
Lita
and
J. E.
Sanchez
, Jr.
,
J. Appl. Phys.
85
,
876
882
(
1999
).
17.
Y. J.
Lee
and
S.-W.
Kang
,
J. Vac. Sci. Technol. A
20
,
1983
1988
(
2002
).
18.
M.
Hegner
,
P.
Wagner
, and
G.
Semenza
,
Surf. Sci.
291
,
39
(
1993
).
19.
B.
Atmaja
,
J.
Frommer
, and
J. C.
Scott
,
Langmuir
22
,
4734
(
2006
).
20.
L.
Chai
and
J.
Klein
,
Langmuir
23
,
7777
(
2007
).
21.
E. A.
Weiss
,
G. K.
Kaufman
,
J. K.
Kriebel
,
Z.
Li
,
R.
Schalek
, and
G. M.
Whitesides
,
Langmuir
23
,
9686
(
2007
).
22.
N. C.
Lindquist
,
P.
Nagpal
,
A.
Lesuffleur
,
D. J.
Norris
, and
S.-H.
Oh
,
Nano Lett.
10
,
1369
(
2010
).
23.
M.
Higo
,
K.
Fujita
,
M.
Mitsushio
,
T.
Yoshidome
, and
T.
Kakoi
,
Thin Solid Films
516
,
17
24
(
2007
).
24.
Y.
Golan
,
L.
Margulis
, and
I.
Rubinstein
,
Surf. Sci.
264
,
312
326
(
1992
).
25.
I.
Platzman
,
C.
Saguy
,
R.
Brener
,
R.
Tannenbaum
, and
H.
Haick
,
Langmuir
26
,
191
(
2009
).
26.
C. Y.
Chang
and
R. W.
Vook
,
J. Vac. Sci. Technol. A
9
,
559
562
(
1991
).
27.
P. B.
Barna
,
M.
Adamik
,
U.
Kaiser
,
S.
Laux
,
H.
Bangert
,
M.
Pulliainen
, and
K. A.
Pischow
,
Surf. Coat. Technol.
100
,
72
75
(
1998
).
28.
P.
Allongue
,
C.
Henry de Villeneuve
,
S.
Morin
,
R.
Boukherroub
, and
D. D. M.
Wayner
,
Electrochim. Acta
45
,
4591
(
2000
).
29.
I.
Levine
,
S. M.
Weber
,
Y.
Feldman
,
T.
Bendikov
,
H.
Cohen
,
D.
Cahen
, and
A.
Vilan
,
Langmuir
28
,
404
415
(
2012
).
30.
C. W.
Hollars
and
R. C.
Dunn
,
Rev. Sci. Instrum.
69
,
1747
(
1998
).
31.
P. B.
Barna
and
M.
Adamik
,
Thin Solid Films
317
,
27
33
(
1998
).
32.
C.
Eisenmenger-Sittner
,
J. Appl. Phys.
89
,
6085
6091
(
2001
).
33.
R.
Stumpf
and
M.
Scheffler
,
Phys. Rev. Lett.
72
,
254
(
1994
).
34.
35.
Z. J.
Liu
,
Y. G.
Shen
,
L. P.
He
, and
T.
Fu
,
Appl. Surf. Sci.
226
,
371
377
(
2004
).
36.
H.
Haick
and
D.
Cahen
,
Acc. Chem. Res.
41
,
359
366
(
2008
).
37.
I. V.
Markov
,
Crystal Growth for Beginners
, 2nd ed. (
World Scientific
,
Singapore
,
2003
).
38.
A. L.
del Vecchio
and
F.
Spaepen
,
J. Appl. Phys.
101
,
063518
(
2007
).
39.
L.
Cui-Lian
and
H.
Chin-Kun
,
Appl. Phys. Lett.
96
,
093101
(
2010
).
40.
B. W.
Sloope
and
C. O.
Tiller
,
J. Appl. Phys.
36
,
3174
3181
(
1965
).
41.
A.-L.
Barabási
and
H. E.
Stanley
,
Fractal Concepts in Surface Growth
(
Cambridge University Press
,
Great Britain
,
1995
).
42.
J. G.
Amar
,
F.
Family
, and
P.-M.
Lam
,
Phys. Rev. B
50
,
8781
8797
(
1994
).
43.
M. J.
Verkerk
and
G. J.
van der Kolk
,
J. Vac. Sci. Technol. A
4
,
3101
3105
(
1986
).
44.
S. M.
Binz
,
M.
Hupalo
, and
M. C.
Tringides
,
Phys. Rev. B
78
,
193407
(
2008
).
45.
See supplementary material at http://dx.doi.org/10.1063/1.4730411 for (1) different correlations of roughness with evaporation rate and thickness; (2) correlation of the data of Ref. 15 with Eqs. (2) and (3); (3) computation of estimated heating during UFTD; (4) residual gas analysis of evaporator chamber; (5) XPS survey scan of Al film; (6) AFM image of Al film deposited from an alternative boat made of Al2O3-coated W.

Supplementary Material

You do not currently have access to this content.