The influence of quantum dot magnetization on electronic spin-dependent transport is investigated through a triple-quantum-dot ring structure in which one of the quantum dots is non-magnetic subjected to the Rashba spin-orbit interaction and the two other ones possess magnetic structure. Evaluated results, based on single particle Green’s function formalism, indicate that the presence of magnetic moment on the quantum dots leads to additional spin-dependent phase factor which affects electronic transport through the system. For both antiferromagnetic and ferromagnetic quantum dots, the system can operate as a spin-splitter but differently; by tuning Rashba spin-orbit strength and in the presence of magnetic flux, respectively. Besides, in the absence of one of the outgoing leads, spin current in the output is calculated and demonstrated that magnetization of quantum dots leads to spin current even in the absence of Rashba spin-orbit effect. Moreover, it is shown that in the presence of Rashba spin orbit interaction, magnetic quantum dots, and magnetic flux, the two terminal system produces a completely tunable spin current.

1.
I.
Žutić
,
J.
Fabian
, and
S. D.
Sarma
,
Rev. Mod. Phys.
76
,
323
(
2004
).
2.
S. A.
Wolf
 et al,
Science
294
,
1488
(
2001
).
3.
Y.
Tserkovnyak
and
A.
Brataas
,
Phys. Rev. B
76
,
155326
(
2007
).
5.
D.
Loss
and
D. P.
DiVincenzo
,
Phys. Rev. A
57
,
120
(
1998
).
6.
E.
Cota
,
R.
Aguado
, and
G.
Platero
,
Phys. Rev. Lett.
94
,
107202
(
2005
).
7.
E. N.
Bulgakov
and
A. F.
Sadreev
,
Phys. Rev. B
66
,
075331
(
2002
).
8.
I. A.
Shelykh
,
N. G.
Galkin
, and
N. T.
Bagraev
,
Phys. Rev. B
72
,
235316
(
2005
).
9.
E.
Faizabadi
and
A.
Najafi
,
Solid State Commun.
150
,
1404
(
2010
).
10.
K. C.
Nowack
,
F. H. L.
Koppens
,
Yu. V.
Nazarov
, and
L. M. K.
Vandersypen
,
Science
318
,
1430
(
2007
).
11.
P.
Debray
 et al,
Nat. Nanotechnol.
4
,
759
(
2009
).
12.
A. A.
Reynoso
,
G.
Usaj
,
C. A.
Balseiro
,
D.
Feinberg
, and
M.
Avignon
,
Phys. Rev. Lett.
101
,
107001
(
2008
).
13.
H.
Hirayama
,
Y.
Aoki
, and
C.
Kato
,
Phys. Rev. Lett.
107
,
027204
(
2011
).
14.
H.
Cheol Koo
 et al,
Science
325
,
1515
(
2009
).
15.
N. F.
Mott
and
H. S. W.
Massay
,
The Theory of Atomic Collisions
, 2nd ed. (
Clarendon
,
Oxford
,
1949
).
16.
M.
Dey
,
S. K.
Maiti
, and
S. N.
Karmakar
,
Phys. Lett. A
374
,
1522
(
2010
).
17.
K. C.
Seo
,
G.
Ihm
, and
S. J.
Lee
,
Physica E
40
,
2185
(
2008
).
18.
M.
Dey
,
S. K.
Maiti
, and
S. N.
Karmakar
,
Europhys. J. B
80
,
105
(
2011
).
19.
S. K.
Maiti
,
J. Comput. Theor. Nanosci.
8
,
676
(
2011
).
20.
L. P.
Levy
,
G.
Dolan
,
J.
Dunsmuir
, and
H.
Bouchiat
,
Phys. Rev. Lett.
64
,
2074
(
1990
).
21.
J.
Nitta
,
T.
Akazaki
,
H.
Takayanagi
, and
T.
Enoki
,
Phys. Rev. Lett.
78
,
1335
(
1997
).
22.
J.
Nitta
,
F. E.
Meijer
, and
H.
Takayanagi
,
Appl. Phys. Lett.
75
,
695
(
1999
).
23.
B.
Molnar
,
F. M.
Peeters
, and
P.
Vasilopoulos
,
Phys. Rev. B
69
,
155335
(
2004
).
24.
D.
Frustaglia
and
K.
Richter
,
Phys. Rev. B
69
,
235310
(
2004
).
25.
P.
Foldi
,
O.
Kalman
,
M. G.
Benedict
, and
F. M.
Peeters
,
Phys. Rev. B
73
,
155325
(
2006
).
26.
F.
Zhai
and
H. Q.
Xu
,
Phys. Rev. Lett.
94
,
246601
(
2005
).
27.
T.
Koga
,
J.
Nitta
, and
M.
van Veenhuizen
,
Phys. Rev. B
70
,
161302
R
(
2004
).
28.
A.
Reed
,
J. N.
Randall
,
R. J.
Aggarwal
,
R. J.
Matyi
,
T. M.
Moore
, and
A. E.
Wetsel
,
Phys. Rev. Lett.
60
,
535
(
1988
).
29.
W.
Gong
,
Y.
Zheng
, and
T.
Lu
,
Appl. Phys. Lett.
92
,
042104
(
2008
).
30.
Q. F.
Sun
,
J.
Wang
, and
H.
Guo
,
Phys. Rev. B
71
,
165310
(
2005
).
31.
S.
Datta
,
Electronic Transport in Mesoscopic Systems
(
Cambridge University Press
,
Cambridge
,
1997
).
32.
H.
Bruus
and
K.
Flensberg
,
Many-Body Quantum Theory in Condensed Matter Physics
(
Oxford University Press
,
2004
).
33.
Y.
Meir
and
N. S.
Wingreen
,
Phys. Rev. Lett.
68
,
2512
(
1992
).
You do not currently have access to this content.