We report on experimental observations of room temperature low frequency capacitance-voltage (CV) behaviour in metal oxide semiconductor (MOS) capacitors incorporating high dielectric constant (high-k) gate oxides, measured at ac signal frequencies (2 kHz to 1 MHz), where a low frequency response is not typically expected for Si or GaAs MOS devices. An analysis of the inversion regions of the CV characteristics as a function of area and ac signal frequency for both n and p doped Si and GaAs substrates indicates that the source of the low frequency CV response is an inversion of the semiconductor/high-k interface in the peripheral regions outside the area defined by the metal gate electrode, which is caused by charge in the high-k oxide and/or residual charge on the high-k oxide surface. This effect is reported for MOS capacitors incorporating either MgO or GdSiOx as the high-k layers on Si and also for Al2O3 layers on GaAs(111B). In the case of NiSi/MgO/Si structures, a low frequency CV response is observed on the p-type devices, but is absent in the n-type devices, consistent with positive charge (>8 × 1010 cm−2) on the MgO oxide surface. In the case of the TiN/GdSiOx/Si structures, the peripheral inversion effect is observed for n-type devices, in this case confirmed by the absence of such effects on the p-type devices. Finally, for the case of Au/Ni/Al2O3/GaAs(111B) structures, a low-frequency CV response is observed for n-type devices only, indicating that negative charge (>3 × 1012 cm−2) on the surface or in the bulk of the oxide is responsible for the peripheral inversion effect.

1.
V.
Djara
,
K.
Cherkaoui
,
M.
Schmidt
,
S.
Monaghan
,
É.
O’Connor
,
I. M.
Povey
,
D.
O’Connell
,
M. E.
Pemble
, and
P. K.
Hurley
,
IEEE Trans. Electron Devices
59
(
4
),
1084
(
2012
).
2.
L.
Yan
,
C.
Lopez
,
R.
Shrestha
,
E.
Irene
,
A.
Suvorova
, and
M.
Saunders
,
Appl. Phys. Lett.
88
,
142901
(
2006
).
3.
A.
Posadas
,
F.
Walker
,
C.
Ahn
,
T.
Goodrich
,
Z.
Cai
, and
K.
Ziemer
,
Appl. Phys. Lett.
92
,
233511
(
2008
).
4.
C.
Miller
,
Z.
Li
,
I.
Schuller
,
R.
Dave
,
J.
Slaughter
, and
J.
Akerman
,
Phys. Rev. Lett.
99
,
047206
(
2007
).
5.
A.
Iovan
,
S.
Andersson
,
Y.
Naidyuk
,
A.
Vedyaev
,
B.
Dieny
, and
V.
Korenivski
,
Nano Lett.
8
,
805
(
2008
).
6.
II-VI and I-VII Compounds; Semimagnetic Compounds
, Landolt-Börnstein, New Series, Group III Vol. 41B, edited by
O.
Madelung
(
Springer
,
Berlin
,
1999
).
7.
B.
Brennan
,
S.
Mc Donnell
, and
G.
Hughes
,
J. Phys.: Conf. Ser.
100
,
042047
(
2008
).
8.
O.
Engström
,
B.
Raeissi
,
S.
Hall
,
O.
Buiu
,
M. C.
Lemme
,
H. D. B.
Gottlob
,
P. K.
Hurley
, and
K.
Cherkaoui
,
Solid-State Electron.
51
(
4
),
622
626
(
2007
).
9.
H.
Wong
and
H.
Iwai
,
Microelectron. Eng.
83
(
10
),
1867
1904
(
2006
).
10.
D.
Landheer
,
X.
Wu
,
J.
Morais
,
I. J. R.
Baumvol
,
R. P.
Pezzi
,
L.
Miotti
,
W. N.
Lennard
, and
J. K.
Kim
,
Appl. Phys. Lett.
79
(
16
),
2618
2620
(
2001
).
11.
H. D. B.
Gottlob
,
A.
Stefani
,
M.
Schmidt
,
M. C.
Lemme
,
H.
Kurz
,
I. Z.
Mitrovic
,
M.
Werner
,
W. M.
Davey
,
S.
Hall
,
P. R.
Chalker
,
K.
Cherkaoui
,
P. K.
Hurley
,
B.
Raeissi
,
O.
Engström
, and
S. B.
Newcomb
,
J. Vac. Sci. Technol. B.
27
(
1
),
258
261
(
2009
).
12.
D. J.
Lichtenwalner
,
J. S.
Jur
,
A. I.
Kingon
,
M. P.
Agustin
,
Y.
Yang
,
S.
Stemmer
,
L. V.
Goncharova
,
T.
Gustafsson
, and
E.
Garfunkel
,
J. Appl. Phys.
98
,
024314
(
2005
).
13.
P.
Casey
,
E.
O’Connor
,
R.
Long
,
B.
Brennan
,
S. A.
Krasnikov
,
D.
O’Connell
,
P. K.
Hurley
, and
G.
Hughes
,
Microelectron. Eng.
86
,
1711
1714
(
2009
).
14.
P. K.
Hurley
,
K.
Cherkaoui
,
E.
O’Connor
,
M. C.
Lemme
,
H. D. B.
Gottlob
,
M.
Schmidt
,
S.
Hall
,
Y.
Lu
,
O.
Buiu
,
B.
Raeissi
,
J.
Piscator
,
O.
Engstrom
, and
S. B.
Newcomb
,
J. Electrochem. Soc.
155
(
2
),
G13
G20
(
2008
).
15.
H. D. B.
Gottlob
,
M.
Schmidt
,
A.
Stefani
,
M. C.
Lemme
,
H.
Kurz
,
I. Z.
Mitrovic
,
W. M.
Davey
,
S.
Hall
,
M.
Werner
,
P. R.
Chalker
,
K.
Cherkaoui
,
P. K.
Hurley
,
J.
Piscator
,
O.
Engström
, and
S. B.
Newcomb
,
Microelectron. Eng.
86
,
1642
1645
(
2009
).
16.
H. G. B.
Gottlob
,
A.
Stefani
,
M.
Schmidt
,
M. C.
Lemme
,
H.
Kurz
,
I. Z.
Mitrovic
,
M.
Werner
,
W. M.
Davey
,
S.
Hall
,
P. R.
Chalker
,
K.
Cherkaoui
,
P. K.
Hurley
,
B.
Baeissi
,
O.
Engström
, and
S. B.
Newcomb
,
J. Vac. Sci. Technol. B
27
(
1
),
249
252
(
2009
).
17.
S. B.
Newcomb
,
Inst. Phys. Conf. Ser.
179
,
357
(
2003
).
18.
E.
Nicollian
and
J.
Brews
,
MOS Physics and Technology
(
Wiley
,
New York
,
1982
).
19.
P.
Batude
,
X.
Garros
,
L.
Clavelier
,
C.
Le Royer
,
J. M.
Hartmann
,
V.
Loup
,
P.
Besson
,
L.
Vandroux
,
Y.
Campidelli
,
S.
Deleonibus
, and
F.
Boulanger
,
J. Appl. Phys.
102
,
034514
(
2007
).
20.
B. J.
O’Sullivan
,
P. K.
Hurley
,
E.
O’Connor
,
M.
Modreanu
,
H.
Roussel
,
C.
Jimenez
,
C.
Dubourdieu
,
M.
Audier
, and
J. P.
Sénateur
,
J. Electrochem. Soc.
151
(
8
)
G493
G496
(
2004
).
21.
E. H.
Poindexter
,
Semicond. Sci. Technol.
4
,
961
(
1989
).
22.
A.
Stesmans
and
V. V.
Afanas’ev
,
J. Appl. Phys.
97
,
033510
(
2004
).
23.
A.
Stesmans
and
V. V.
Afanas’ev
,
Appl. Surf. Sci.
168
,
324
(
2000
).
24.
E. H.
Poindexter
,
G. J.
Gerardi
,
M.‐E.
Rueckel
,
P. J.
Caplan
,
N. M.
Johnson
, and
D. K.
Biegelsen
,
J. Appl. Phys.
56
,
2844
(
1984
).
25.
P. K.
Hurley
,
B. J.
O’Sullivan
,
V. V.
Afanas’ev
, and
A.
Stesmans
,
Electrochem. Solid State Lett.
8
(
2
),
G44
G46
(
2005
).
26.
Y.
Federenko
,
L.
Truong
,
V. V.
Afanas’ev
, and
A.
Stesmans
,
Appl. Phys. Lett.
84
,
4771
(
2004
).
27.
N. H.
Thoan
,
K.
Keunen
,
V. V.
Afanas’ev
, and
A.
Stesmans
,
J. Appl. Phys.
109
,
013710
(
2011
).
28.
S.
Monaghan
,
P. K.
Hurley
,
K.
Cherkaoui
,
M. A.
Negara
, and
A.
Schenk
,
Solid-State Electron.
53
,
438
444
(
2009
).
29.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
).
30.
M.
Passlack
,
M.
Hong
,
J. P.
Mannaerts
,
R. L.
Opila
,
S. N. G.
Chu
,
N.
Moriya
,
F.
Ren
, and
J. R.
Kwo
,
IEEE Trans. Electron. Devices
44
(
2
),
214
(
1997
).
You do not currently have access to this content.