We investigate the influence of the Sb flux on the growth of GaSb islands on a highly mismatched (001) GaP substrate. Between low and medium Sb flux values, standard kinetics drives the GaSb island formation and their relaxation is progressively favored by 90° misfit dislocations at the GaSb/GaP interface. However, under high Sb flux, the GaSb islands are elongated in the [110] direction and their density decreases. Further experiments varying the growth temperature at fixed Sb flux confirm this finding. We relate this observation to an enhancement of Ga diffusion when the effective Sb flux on the surface is increased. This behavior is qualitatively explained by the large cohesive energy of Sb-Sb bonds present on the surface, which impede the Ga adatom incorporation.

1.
H.-R.
Blank
,
M.
Thomas
,
K. C.
Wong
, and
H.
Kroemer
,
Appl. Phys Lett.
69
,
2080
(
1996
).
2.
B. R.
Bennett
,
R.
Magno
,
J. B.
Boos
,
W.
Kruppa
, and
M. G.
Ancona
,
Solid-State Electron.
49
,
1875
(
2005
).
3.
J. M.
Kang
,
Suk-Ki
Min
,
A.
Rocher
,
Appl. Phys. Lett.
65
,
2954
(
1994
).
4.
W.
Qian
,
M.
Skowronski
,
R.
Kaspi
,
M.
De Graef
, and
V. P.
Dravid
,
J. Appl. Phys.
81
,
7268
(
1997
).
5.
A.
Yu Babkevich
,
R. A.
Cowley
,
N. J.
Mason
, and
A.
Stunault
,
J. Phys.: Condens. Matter
12
,
4747
(
2000
).
6.
S. H.
Huang
,
G.
Balakrishman
,
A.
Khoshakhalagh
,
A.
Jallipalli
,
L. R.
Dawson
, and
D. L.
Huffaker
,
Appl. Phys. Lett.
88
,
131911
(
2006
).
7.
M.
Kinder
and
E. M.
Goldys
,
Appl. Phys. Lett.
73
,
1233
(
1998
).
8.
A.
Subekti
,
Melissa J.
Paterson
,
E. M.
Goldys
, and
T. L.
Tansley
,
Appl. Surf. Sci.
140
,
190
(
1999
).
9.
T.
Wang
and
A.
Forchel
,
J. Appl. Phys.
85
,
2591
(
1999
).
10.
S. S.
Yi
,
D. M.
Hansen
,
C. K.
Inoki
,
D. L.
Harris
,
T. S.
Kuan
, and
T. F.
Kuecha
,
Appl. Phys. Lett.
77
,
842
(
2000
).
11.
M.
Ahmad Kamarudin
,
M.
Hayne
,
Q. D.
Zhuang
,
O.
Kolosov
,
T.
Nuytten
,
V. V.
Moshchalkov
, and
F.
Dinelli
,
J. Phys. D: Appl. Phys.
43
,
065402
(
2010
).
12.
C.
Jiang
and
H.
Sakaki
,
Physica E
32
,
17
(
2006
).
13.
J.
Tatebayashi
,
A.
Khoshakhalagh
,
S. H.
Huang
,
L. R.
Dawson
,
G.
Balakrishman
, and
D. L.
Huffaker
,
Appl. Phys. Lett.
89
,
203116
(
2006
).
14.
I.
Németh
,
B.
Kunert
,
W.
Stolz
, and
K.
Volz
,
J. Cryst. Growth
310
,
1595
(
2008
).
15.
S.
El Kazzi
,
L.
Desplanque
,
C.
Coinon
,
Y.
Wang
,
P.
Ruterana
, and
X.
Wallart
,
Appl. Phys. Lett.
97
,
192111
(
2010
).
16.
Y.
Wang
,
P.
Ruterana
,
H. P.
Lei
,
J.
Chen
,
S.
Kret
,
S.
El Kazzi
,
L.
Desplanque
, and
X.
Wallart
,
J. Appl. Phys.
110
,
043509
(
2011
).
17.
MountainsMap® Software 6.2 (
2011
), Digital Surf, see http://www.digitalsurf.fr
18.
O.
Suekane
,
S.
Hasegawa
,
M.
Takata
,
T.
Okui
, and
H.
Nakashima
,
Mater. Sci. Eng. B
88
,
158
(
2002
).
19.
L. J.
Whitman
,
P. M.
Thibado
,
S. C.
Erwin
,
B. R.
Bennett
, and
B. V.
Shanabrook
,
Phys. Rev. Lett.
79
,
693
(
1997
).
20.
B. R.
Bennett
,
B. V.
Shanabrook
, and
M. E.
Twigg
,
J. Appl. Phys.
85
,
2157
(
1999
).
21.
B.
Paulus
,
P.
Fulde
, and
H.
Stoll
,
Phys. Rev. B.
54
,
2556
(
1996
).
22.
Y.
Wang
,
P.
Ruterana
,
L.
Desplanque
,
S.
El Kazzi
, and
X.
Wallart
,
J. Appl. Phys.
109
,
023509
(
2011
).
You do not currently have access to this content.