Even though the great interest in studying the near-infrared light emission due to Er3+ ions for telecommunication purposes, efficient visible radiation can be achieved from many different rare-earth (RE) ions. In fact, visible and/or near-infrared light emission takes place in RE-doped wide bandgap semiconductors following either photon or electron excitation, suggesting their technological potential in devices such as light-emitting diodes (LED's) and flat-panel displays, for example. Taking into consideration these aspects, the present contribution reports on the investigation of AlN, BeN, GeN, and SiN thin films doped with samarium. The samples were prepared by sputtering and as a result of the deposition method and conditions they present an amorphous structure and Sm concentrations in the low 0.5 at. %. After deposition, the samples were submitted to thermal annealing treatments and investigated by different spectroscopic techniques. A detailed examination of the experimental data allowed to identify optical transitions due to Sm3+ and Sm2+ ions as well as differences in their mechanisms of photon excitation and recombination. Moreover, it is shown that the Sm-related spectral features and emission intensity are susceptible, respectively, to the atomic environment the Sm3+/Sm2+ ions experience and to the presence of non-radiative recombination centers.

1.
G. H.
Dieke
,
Spectra and Energy Levels of Rare-Earth Ions in Crystals
(
Wiley Interscience
,
New York
,
1968
).
2.
S.
Hufner
,
Optical Spectra of Transparent Rare-Earth Compounds
(
Academic
,
New York
,
1978
).
3.
B.
Henderson
and
G. F.
Imbush
,
Optical Spectroscopy of Inorganic Solids
(
Clarendon
,
Oxford
,
1989
).
4.
A. J.
Steckl
and
J. M.
Zavada
,
MRS Bull.
24
,
16
(
1999
).
5.
A. J.
Kenyon
,
Prog. Quantum Electron.
26
,
225
(
2002
).
6.
A. R.
Zanatta
,
Appl. Phys. Lett.
82
,
1395
(
2003
); and references therein.
7.
A. R.
Zanatta
and
L.
Nunes
,
Appl. Phys. Lett.
72
,
3127
(
1998
).
8.
B.
Chapman
,
Glow Discharge Processes: Sputtering and Plasma Etching
(
John Wiley
,
New York
,
1980
).
9.
Thin Film Processes
, edited by
J. L.
Vossen
and
W.
Kern
(
Academic
,
New York
,
1978
).
10.
R.
Swanepoel
,
J. Phys. E: Sci. Instrum.
16
,
1214
(
1983
).
11.
A. R.
Zanatta
,
J. Phys. D: Appl. Phys.
42
,
25109
(
2009
).
12.
A. R.
Zanatta
,
M.
Bell
, and
L.
Nunes
,
Phys. Rev. B
59
,
10091
(
1999
).
13.
A. R.
Zanatta
,
C. T. M.
Ribeiro
, and
U.
Jahn
,
J. Appl. Phys.
98
,
093514
(
2005
).
14.
C. T. M.
Ribeiro
,
M.
Siu Li
, and
A. R.
Zanatta
,
J. Appl. Phys.
96
,
1068
(
2004
).
15.
Handbook of Raman Spectroscopy
, edited by
I. R.
Lewis
and
H. G. M.
Edwards
(
Marcel Dekker, Inc.
,
New York
,
2001
), and references therein.
16.
G.
Blasse
and
B. C.
Grabmaier
,
Luminescent Materials
(
Springer
,
Berlin
,
1994
).
17.
J. G.
Solé
,
L. E.
Bausá
, and
D.
Jaque
,
An Introduction to the Optical Spectroscopy of Inorganic Solids
(
John Wiley & Sons
,
Chichester
,
2005
).
18.
B. G.
Wybourne
,
Spectroscopic Properties of Rare-Earths
(
John Wiley & Sons
,
New York
,
1965
).
19.
Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series
, edited by
K. H.
Hellwege
and
A. M.
Hellwege
(
Springer-Verlag
,
Berlin
,
1989
).
20.
P. N.
Favennec
,
H. L.
Haridon
,
M.
Salvi
,
D.
Moutonnet
, and
Y. L.
Guillou
,
Electron. Lett.
25
,
718
(
1989
).
21.
C. T. M.
Ribeiro
and
A. R.
Zanatta
,
J. Non-Cryst. Solids
338–340
,
469
(
2004
).
22.
M.
Fujii
,
M.
Yoshida
,
Y.
Kanzawa
,
S.
Hayashi
, and
K.
Yamamoto
,
Appl. Phys. Lett.
71
,
1198
(
1997
).
You do not currently have access to this content.