The question of what bandstructure produces the best thermoelectric device performance is revisited from a Landauer perspective. We find that a delta-function transport distribution function (TDF) results in operation at the Mahan-Sofo upper limit for the thermoelectric figure-of-merit, ZT. We show, however, the Mahan-Sofo upper limit itself depends on the bandwidth (BW) of the dispersion, and therefore, a finite BW dispersion produces a higher ZT when the lattice thermal conductivity is finite. Including a realistic model for scattering profoundly changes the results. Instead of a narrow band, we find that a broad BW is best. The prospects of increasing ZT through high valley degeneracy or by distorting the density-of-states are discussed from a Landauer perspective. We conclude that while there is no simple answer to the question of what bandstructure produces the best thermoelectric performance, the important considerations can be expressed in terms of three parameters derived from the bandstructure—the density-of-states, D(E), the number of channels, M(E), and the mean-free-path, λ(E).

1.
A. F.
Ioffe
,
Semiconductor Thermoelements and Thermoelectric Cooling
(
Infosearch Limited
,
1957
).
2.
J. R.
Sootsman
,
D. Y.
Chung
, and
M. G.
Kanatzidis
,
Angew. Chem., Int. Ed.
48
,
8616
8639
(
2009
).
3.
S. K.
Bux
,
R. G.
Blair
,
P. K.
Gogna
,
H.
Lee
,
G.
Chen
,
M. S.
Dresselhaus
,
R. B.
Kaner
, and
J.-P.
Fleurial
,
Adv. Funct. Mater.
19
,
2445
2452
(
2009
).
4.
L.
Weber
and
E.
Gmelin
,
Appl. Phys. A: Mater. Sci. Process.
53
,
136
140
(
1991
).
5.
C.
Jeong
,
R.
Kim
,
M.
Luisier
,
S.
Datta
, and
M.
Lundstrom
,
J. Appl. Phys.
107
,
023707
(
2010
).
6.
H. J.
Goldsmid
,
Thermoelectric Refrigeration
(
Plenum
,
1964
).
7.
Y.
Ma
,
Q.
Hao
,
B.
Poudel
,
Y.
Lan
,
B.
Yu
,
D.
Wang
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
8
,
2580
2584
(
2008
).
8.
J. P.
Heremans
,
V.
Jovovic
,
E. S.
Toberer
,
A.
Saramat
,
K.
Kurosaki
,
A.
Charoenphakdee
,
S.
Yamanaka
, and
G. J.
Snyder
,
Science
321
,
554
557
(
2008
).
9.
A. I.
Hochbaum
,
R.
Chen
,
R.
Diaz Delgado
,
W.
Liang
,
E. C.
Garnett
,
M.
Najarian
,
A.
Majumdar
, and
P.
Yang
,
Nature
451
,
163
167
(
2008
).
10.
A. I.
Boukai
,
Y.
Bunimovich
,
J.
Tahir-Kheli
,
J.-K.
Yu
,
W. A.
Goddard
 III
, and
J. R.
Heath
,
Nature
451
,
168
171
(
2008
).
11.
R.
Venkatasubramanian
,
E.
Siivola
,
T.
Colpitts
, and
B.
O’Quinn
,
Nature
413
,
597
602
(
2001
).
12.
T. C.
Harman
,
P. J.
Taylor
,
M. P.
Walsh
, and
B. E.
LaForge
,
Science
297
,
2229
2232
(
2002
).
13.
P. F. P.
Poudeu
,
J.
D’Angelo
,
A. D.
Downey
,
J. L.
Short
,
T. P.
Hogan
, and
M. G.
Kanatzidis
,
Angew. Chem., Int. Ed.
45
,
3835
3839
(
2006
).
14.
J.
Androulakis
,
C.-H.
Lin
,
H.-J.
Kong
,
C.
Uher
,
C.-I.
Wu
,
T.
Hogan
,
B. A.
Cook
,
T.
Caillat
,
K. M.
Paraskevopoulos
, and
M. G.
Kanatzidis
,
J. Am. Chem. Soc.
129
,
9780
9788
(
2007
).
15.
K. F.
Hsu
,
S.
Loo
,
F.
Guo
,
W.
Chen
,
J. S.
Dyck
,
C.
Uher
,
T.
Hogan
,
E. K.
Polychroniadis
, and
M. G.
Kanatzidis
,
Science
303
,
818
821
(
2004
).
16.
J. R.
Sootsman
,
H.
Kong
,
C.
Uher
,
J. J.
D’Angelo
,
C.-I.
Wu
,
T. P.
Hogan
,
T.
Caillat
, and
M. G.
Kanatzidis
,
Angew. Chem., Int. Ed.
47
,
8618
8622
(
2008
).
17.
K.
Biswas
,
J.
He
,
Q.
Zhang
,
G.
Wang
,
C.
Uher
,
V. P.
Dravid
, and
M. G.
Kanatzidis
,
Nat. Chem.
3
,
160
166
(
2011
).
18.
M. G.
Kanatzidis
,
Chem. Mater.
22
,
648
659
(
2010
).
19.
A. F.
May
,
J.-P.
Fleurial
, and
G. J.
Snyder
,
Phys. Rev. B
78
,
125205
(
2008
).
20.
H.
Li
,
X.
Tang
,
Q.
Zhang
, and
C.
Uher
,
Appl. Phys. Lett.
93
,
252109
(
2008
).
21.
G.
Homm
,
P. J.
Klar
,
J.
Teubert
, and
W.
Heimbrodt
,
Appl. Phys. Lett.
93
,
042107
(
2008
).
22.
X. W.
Wang
,
H.
Lee
,
Y. C.
Lan
,
G. H.
Zhu
,
G.
Joshi
,
D. Z.
Wang
,
J.
Yang
,
A. J.
Muto
,
M. Y.
Tang
,
J.
Klatsky
,
S.
Song
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Appl. Phys. Lett.
93
,
193121
(
2008
).
23.
H. J.
Goldsmid
,
Br. J. Appl. Phys.
11
,
209
(
1960
).
24.
G. D.
Mahan
,
Solid State Physics
(
Academic
,
1997
), pp.
81
157
.
25.
G. D.
Mahan
and
J. O.
Sofo
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
7436
7439
(
1996
).
26.
Y.
Nishio
and
T.
Hirano
,
Jpn. J. Appl. Phys.
36
,
5181
5182
(n.d.).
27.
T. E.
Humphrey
and
H.
Linke
,
Phys. Rev. Lett.
94
,
096601
(
2005
).
28.
N.
Nakpathomkun
,
H. Q.
Xu
, and
H.
Linke
,
Phys. Rev. B
82
,
235428
(
2010
).
29.
Z.
Fan
,
H.-Q.
Wang
, and
J.-C.
Zheng
,
J. Appl. Phys.
109
,
073713
(
2011
).
30.
J.
Zhou
,
R.
Yang
,
G.
Chen
, and
M. S.
Dresselhaus
,
Phys. Rev. Lett.
107
,
226601
(
2011
).
31.
Y.
Pei
,
X.
Shi
,
A.
LaLonde
,
H.
Wang
,
L.
Chen
, and
G. J.
Snyder
,
Nature
473
,
66
69
(
2011
).
32.
B. C.
Sales
,
Int. J. Appl. Ceram. Technol.
4
,
291
296
(
2007
).
33.
F. L.
Curzon
,
Am. J. Phys.
43
,
22
(
1975
).
34.
R.
Landauer
,
IBM J. Res. Dev.
1
,
223
(
1957
).
35.
G. D.
Mahan
and
M.
Bartkowiak
,
Appl. Phys. Lett.
74
,
953
954
(
1999
).
36.
C. M.
Finch
,
V. M.
Garcia-Suarez
, and
C. J.
Lambert
,
Phys. Rev. B
79
,
033405
(
2009
).
37.
C.
Jeong
,
R.
Kim
, and
M.
Lundstrom
, e-print arXiv:1103.1274v1 (
2011
).
38.
J.-H.
Lee
,
J.
Wu
, and
J. C.
Grossman
,
Phys. Rev. Lett.
104
,
016602
(
2010
).
39.
C.
Jeong
and
M.
Lundstrom
,
J. Electron. Mater.
40
,
738
743
(
2011
).
You do not currently have access to this content.