Forced assembly microlayer coextrusion was used to produce polycarbonate/poly(vinylidene fluoride-co-hexafluoropropylene) [PC/P(VDF-HFP)] layered films for dielectric capacitor applications. Low field dielectric spectroscopy was systematically carried out on the layered films and controls. A low frequency relaxation was found that shifted to higher frequency and decreased in intensity as the P(VDF-HFP) layer thickness was reduced. The interfacial Maxwell-Wagner polarization, being layer thickness independent, could not account for this reduced low frequency relaxation behavior as the layer thickness decreased. Charge diffusion models by Sawada and Coelho, however, satisfactorily predicted the observed layer thickness effect, indicating that the migration of impurity ions in the P(VDF-HFP) layer caused the low frequency relaxation. A new, convenient fitting procedure was developed for the Sawada model yielding an ion concentration and diffusion coefficient of 2 × 1021 ions/m3 and 2 × 10−13 m2/s, respectively, for films with layer thicknesses of 430 to 50 nm. Thicker layers of 7000 nm had significantly different diffusion parameters, which were attributed to differing crystal orientations in the P(VDF-HFP) layers. These findings show that low ion concentrations, whether from catalyst residue and processing or intentionally added, significantly affect the dielectric properties and can play a vital role in many applications (i.e., LCD displays, solar cells, light-emitting electrochemical cells, capacitors).

1.
M.
Ma
,
K.
Vijayan
,
A.
Hiltner
, and
E.
Baer
,
J. Mater. Sci.
25
,
2039
2046
(
1990
).
2.
T.
Kazmierczak
,
H.
Song
,
A.
Hiltner
, and
E.
Baer
,
Macromol. Rapid Commun.
28
,
2210
2216
(
2007
).
3.
H.
Wang
,
J.
Keum
,
A.
Hiltner
,
E.
Baer
,
B.
Freeman
,
A.
Rozanski
, and
A.
Galeski
,
Science
323
,
757
760
(
2009
).
4.
M. A.
Wolak
,
M.-J.
Pan
,
A.
Wan
,
J. S.
Shirk
,
M.
Mackey
,
A.
Hiltner
,
E.
Baer
, and
L.
Flandin
,
Appl. Phys. Lett.
92
,
113301
(
2008
).
5.
M.
Mackey
,
A.
Hiltner
,
E.
Baer
,
L.
Flandin
,
M. A.
Wolak
, and
J. S.
Shirk
,
J. Phys. D: Appl. Phys.
42
,
175304
(
2009
).
6.
S.
Uemura
,
J. Polym. Sci., Polym. Phys. Ed.
10
,
2155
2166
(
1972
).
7.
A.
Sawada
,
K.
Tarumi
, and
S.
Naemura
,
Jpn. J. Appl. Phys., Part 1
38
,
1418
1422
(
1999
).
8.
S.
Uemura
,
J. Polym. Sci., Polym. Phys. Ed.
12
,
1177
1188
(
1974
).
9.
Y.
Oka
and
N.
Koizumi
,
Polym. J.
14
,
869
876
(
1982
).
10.
S.
Osaki
,
S.
Uemura
, and
Y.
Ishida
,
J. Polym. Sci.
, Part A-2
9
,
585
594
(
1971
).
11.
K.
Arisawa
,
K.
Tsuge
, and
Y.
Wada
,
Jpn. J. Appl. Phys., Part 1
4
,
138
147
(
1965
).
12.
C. C.
Ku
and
R.
Liepins
,
Electrical Properties of Polymers
(
Marcel Dekker
,
New York
,
1987
).
13.
B.
Chu
,
X.
Zhou
,
K.
Ren
,
B.
Neese
,
M.
Lin
,
Q.
Wang
,
F.
Bauer
, and
Q. M.
Zhang
,
Science
313
,
334
336
(
2006
).
14.
D. D. C.
Bradley
,
Polym. Int.
26
,
3
16
(
1991
).
15.
D. K.
Pradhan
,
R. N. P.
Choudhary
, and
B. K.
Samantaray
,
Int. J. Electrochem. Sci.
3
,
597
608
(
2008
).
16.
P. K.
Singh
,
K.-W.
Kim
, and
H.-W.
Rhee
,
Synth. Met.
159
,
1538
1541
(
2009
).
17.
C.
Yang
,
Q.
Sun
,
J.
Qiao
, and
Y.
Li
,
J. Phys. Chem. B
107
,
12981
12988
(
2003
).
18.
B.
Bhattacharya
,
S. K.
Tomar
, and
J.-K.
Park
,
Nanotechnology
485711
(
2007
).
19.
E. M.
Trukhan
,
Sov. Phys. Solid State
4
,
2560
2570
(
1963
).
20.
R.
Coelho
,
Rev. Phys. Appl.
18
,
137
146
(
1983
).
21.
R.
Willecke
and
R.
Faupel
,
Macromolecules
30
,
567
573
(
1997
).
22.
F.
Guan
,
J.
Pan
,
J.
Wang
,
Q.
Wang
, and
L.
Zhu
,
Macromolecules
43
,
384
392
(
2010
).
23.
A.
Boersma
and
J. V.
Turnhout
,
J. Polym. Sci., Part B: Polym. Phys.
36
,
2835
2848
(
1998
).
24.
R. Y. F.
Liu
,
T. E.
Bernal-Lara
,
A.
Hiltner
, and
E.
Baer
,
Macromolecules
37
,
6972
6979
(
2004
).
25.
M.
Mackey
,
L.
Flandin
,
A.
Hiltner
, and
E.
Baer
,
J. Polym. Sci., Part B: Polym. Phys.
49
,
1750
1761
(
2011
).
You do not currently have access to this content.