Comparative studies of yield strength and elastic compressibility between nanocrystalline and bulk cobalt were conducted using synchrotron x-ray diffraction under tri-axial pressure loading-unloading conditions. Relative to micron Co, nano Co exhibits higher flow stress (2.9 GPa compared with 2.1 GPa in micro Co), extra degree of strain-induced peak broadening during loading yet a better strain recoverability after unloading. These observations suggest different deformation mechanisms with intergranular strains dominated in nano Co and intragranular strains in micron Co. The determined bulk modulus for nano Co is 216 GPa, ∼17% higher than that of micron Co (185 GPa). This finding supports a generalized model of nanocrystals with pre-compressed surface layers and indicates that the grain-size induced elastic strengthening and weakening are primarily determined by the nature of internal stress (compressed vs. tensile) present in the surface layer of a nanocrystal.

1.
Y.
Liao
and
S.
Luo
,
J. Mater. Sci.
28
,
1245
(
1993
).
2.
S. W.
Webb
,
Diamond Relat. Mater.
8
,
2043
(
1999
).
3.
C. Y.
Hsu
,
W. R.
Wang
,
W. Y.
Tang
,
S. K.
Chen
, and
J. W.
Yeh
,
Adv. Eng. Mater.
12
,
44
(
2010
).
4.
R.
Filipek
,
M.
Danielewski
, and
R.
Bachorczyk
,
Defect Diffus. Forum
237–240
,
408
413
(
2005
).
5.
A. P.
Barbosa
,
L. J.
Oliveira
,
G. S.
Bobrovnitchii
,
R. S.
Guimaraes
,
A. S.
Crespo
, and
M.
Filgueira
,
Mater. Sci. Forum
591–593
,
247
(
2008
).
6.
E.
Roman
,
Y.
Mokrousov
, and
I.
Souza
,
Phys. Rev. Lett.
103
,
097203
(
2009
).
7.
D.
Antonangeli
,
M.
Krisch
,
D. L.
Farber
,
D. G.
Ruddle
, and
G.
Fiquet
,
Phys. Rev. Lett.
100
,
085501
(
2008
).
8.
V.
Iota
,
J. H.
Klepeis
,
C. S.
Yoo
,
J.
Lang
,
D.
Haskel
, and
G.
Srajer
,
App. Phys. Lett.
90
,
042505
(
2007
).
9.
J. Y.
Huang
,
Y. K.
Wu
, and
H. Q.
Ye
,
Acta Mater.
44
,
1201
(
1996
).
10.
O.
Kitakami
,
H.
Sato
, and
Y.
Shimada
,
Phys. Rev. B
56
,
13849
(
1997
).
11.
N.
Fenineche
,
S.
Guessasma
, and
N.
Abdelbaki
,
Mater. Sci. Eng. B
119
,
65
(
2005
).
12.
A. A.
Karimpoor
,
U.
Erb
,
K. T.
Aust
, and
G.
Palumbo
,
Scr. Mater.
49
,
651
(
2003
).
13.
X.
Shen
,
J.
Lian
,
Z.
Jiang
, and
Q.
Jiang
,
Acta Mater.
53
,
1521
(
2005
).
14.
R. N.
Grass
,
M.
Dietiker
,
C.
Solenthaler
,
R.
Spolenak
, and
W. J.
Stark
,
Nanotechnology
18
,
035703
(
2007
).
15.
X. Z.
Liao
,
Y. H.
Zhao
,
S. G.
Srinivasan
,
Y. T.
Zhua
,
R. Z.
Valiev
, and
D. V.
Gunderov
,
App. Phys. Lett.
84
,
592
(
2004
).
16.
L.
Lu
,
X.
Chen
,
X.
Huang
, and
K.
Lu
,
Science
323
,
607
(
2009
).
17.
M.
Chen
,
E.
Ma
,
K. J.
Hemker
,
H.
Sheng
,
Y.
Wang
, and
X.
Cheng
,
Science
300
,
1275
(
2003
).
18.
C. A.
Schuh
,
T. G.
Nieh
, and
T.
Yamasaki
,
Scripta Mater.
46
,
735
(
2002
).
19.
Z.
Shan
,
E. A.
Stach
,
J. M. K.
Wiezorek
,
J. A.
Knapp
,
D. M.
Follstaedt
, and
S. X.
Mao
,
Science
305
,
654
(
2004
).
20.
H. V.
Swygenhoven
,
Science
296
,
66
(
2002
).
21.
J.
Schiotz
and
K. W.
Jacobsen
,
Science
301
,
1357
(
2003
).
22.
D. J.
Weidner
,
M. T.
Vaughan
,
J.
Ko
,
Y.
Wang
,
X.
Liu
,
R. E.
Pacalo
, and
Y.
Zhao
, in
High-Pressure Research: Application to Earth and Planetary Sciences
, edited by
Y.
Syono
and
M. H.
Manghnani
(
American Geophysics Union
,
Washington, DC
,
1992
), pp.
13
15
.
23.
D. L.
Decker
,
J. Appl. Phys.
42
,
3239
(
1971
).
24.
Y.
Zhao
and
J.
Zhang
,
J. Appl. Crystallogr.
41
,
1095
(
2008
).
25.
D.
Weidner
,
Y.
Wang
, and
M. T.
Vaughan
,
Science
266
,
419
(
1994
).
26.
F.
Birch
,
J. Appl. Phys.
4
,
279
(
1938
).
27.
T.
Ungar
,
J.
Gubicza
,
G.
Ribarik
, and
A.
Borbely
,
J. Appl. Crystallogr.
34
,
298
(
2001
).
28.
Z.
Budrovic
,
H. V.
Swygenhoven
,
P. M.
Derlet
,
S. V.
Petegem
, and
B.
Schmitt
,
Science
304
,
273
(
2004
).
29.
Y.
Zhao
,
J.
Zhang
,
B.
Clausen
,
T. D.
Shen
,
G. T.
Gray
, and
L.
Wang
,
Nano Lett.
7
,
426
(
2007
).
30.
X.
Yu
,
J.
Zhang
,
L.
Wang
,
Z.
Ding
,
C.
Jin
, and
Y.
Zhao
,
Acta Mater.
59
,
3384
(
2011
).
31.
S.
Cheng
,
A. D.
Stoica
,
X. L.
Wang
,
Y.
Ren
,
J.
Almer
,
J. A.
Horton
,
C. T.
Liu
,
B.
Clausen
,
D. W.
Brown
,
P. K.
Liaw
, and
L.
Zuo
,
Phys. Rev. Lett.
103
,
035502
(
2009
).
32.
S.
Merkel
,
C.
Tomé
, and
H. R.
Wenk
,
Phys. Rev. B
79
,
064110
(
2009
).
33.
E. B.
Zaretsky
J. Appl. Phys.
108
,
083525
(
2010
).
34.
E. O.
Hall
,
Proc. Phys. Soc. London, Ser. B
64
,
747
(
1951
).
35.
N. J.
Petch
,
J. Iron Steel Inst., London
174
,
25
(
1953
).
36.
D.
Antonangeli
,
L. R.
Benedetti
,
D. L.
Farber
,
G.
Steinle–Neumann
,
A.
Auzende
,
J.
Badro
,
M.
Hanfland
, and
M.
Krisch
,
App. Phys. Lett.
92
,
111911
(
2008
).
37.
H.
Fujihisa
and
K.
Takemura
,
Phys. Rev. B
54
,
5
(
1996
).
38.
C. S.
Yoo
,
P.
Söderlind
, and
H.
Cynn
,
J. Phys.: Condens. Matter
10
,
L311
(
1998
).
39.
M.
Guinan
and
D.
Steinberg
,
J. Phys. Chem. Solids
35
,
1501
(
1974
).
40.
B. W.
Bennett
and
G. W.
Shannette
,
Acoust. Lett.
4
,
99
(
1980
).
41.
J.
Gump
,
H.
Xia
,
M.
Chirita
,
R.
Sooryakumarb
,
M. A.
Tomaz
, and
G. R.
Harp
,
J. Appl. Phys.
86
,
6005
(
1999
).
42.
J.
Zhang
,
Y.
Zhao
, and
B.
Palosz
,
Appl. Phys. Lett.
90
,
043112
(
2007
).
43.
E. A.
Owen
and
D. M.
Jones
,
Proc. Phys. Soc. London
67
,
456
(
1954
).
44.
G. I.
Kulesko
and
A. L.
Seryugin
,
Phys. Met. Metallogr.
26
,
140
(
1968
).
You do not currently have access to this content.