A photothermal technique capable of measuring thermal conductivity with micrometer lateral resolution is presented. This technique involves measuring separately the thermal diffusivity, D, and thermal effusivity, e, to extract the thermal conductivity, k = (e2/D)1/2. To generalize this approach, sensitivity analysis is conducted for materials having a range of thermal conductivities. Application to nuclear fuel is consider by performing experimental validation using two materials (CaF2 and SiO2) having thermal properties representative of fresh and high burnup nuclear fuel. The measured conductivities compare favorably with literature values.

1.
V. V.
Rondinella
and
T.
Wiss
, “
The high burn-up structure in nuclear fuel
,”
Mater. Today
13
,
24
(
2010
).
2.
I.
Cohen
,
B.
Lustman
, and
J. D.
Eichenberg
,
J. Nucl. Mater.
3
,
331
(
1961
).
3.
E.
Kolstad
and
C.
Vitanza
,
J. Nucl. Mater.
188
,
104
(
1992
).
4.
P. G.
Lucuta
,
Hj.
Matzke
, and
I. J.
Hastings
,
J. Nucl. Mater.
232
,
166
(
1996
).
5.
D. H.
Hurley
,
M.
Khafizov
, and
S. L.
Shinde
,
J. Appl. Phys.
109
,
083504
(
2011
).
6.
A. J.
Schmidt
,
R.
Cheaito
, and
M.
Chiesa
,
Rev. Sci. Instrum.
80
,
94901
(
2009
).
7.
M.
Khafizov
and
D. H.
Hurley
,
J. Appl. Phys.
110
,
83525
(
2011
).
8.
A.
Rosencwaig
,
J.
Opsal
,
W. L.
Smith
, and
D. L.
Willenborg
,
Appl. Phys. Lett.
46
,
1013
(
1985
).
9.
L.
Pottier
,
Appl. Phys. Lett.
64
,
1618
(
1994
).
10.
J.
Hartmann
,
P.
Voigt
, and
M.
Reichling
,
J. Appl. Phys.
81
,
2966
(
1997
).
11.
H.
Gronbeck
and
M.
Reichling
,
J. Appl. Phys.
78
,
6408
(
1995
).
12.
C. A.
Paddock
and
G. L.
Eesley
,
J. Appl. Phys.
60
,
285
(
1986
).
13.
Y. K.
Koh
,
S. L.
Singer
,
W.
Kim
,
J. M. O.
Zide
,
H.
Lu
,
D. G.
Cahill
,
A.
Majumdar
, and
A. C.
Gossard
,
J. Appl. Phys.
105
,
54303
(
2009
).
14.
C.
Ronchi
,
M.
Sheindlin
,
D.
Staicu
, and
M.
Kinoshita
,
J. Nucl. Mater.
327
,
58
(
2004
).
15.
P.
Schoderböck
,
H.
Klocker
,
L. S.
Sigl
, and
G.
Seeber
,
Int. J. Thermophys.
30
,
599
(
2009
).
16.
F.
Hemberger
,
H.-P.
Ebert
, and
J.
Fricke
,
Int. J. Thermophys.
28
,
1509
(
2007
).
17.
D. G.
Cahill
,
W. K.
Ford
,
K. E.
Goodson
,
G. D.
Mahan
,
A.
Majumdar
,
H. J.
Maris
,
R.
Merlin
, and
S. R.
Phillpot
,
J. Appl. Phys.
93
,
793
(
2003
).
18.
A.
Mandelis
,
J. Appl. Phys.
78
,
647
(
1995
).
19.
D. H.
Hurley
and
K. L.
Telschow
,
Phys. Rev. B
71
,
241410
(
2005
).
20.
K.
Hatori
,
N.
Yaketoshi
,
T.
Baba
, and
H.
Ohta
,
Rev. Sci. Instrum.
76
,
114901
(
2005
).
21.
W. B.
Jackson
,
N. M.
Amer
,
C.
Boccara
, and
D.
Fournier
,
Appl. Opt.
20
,
1333
(
1981
).
22.
B.
Li
,
J. P.
Roger
,
L.
Pottier
, and
D.
Fournier
,
J. Appl. Phys.
86
,
5314
(
1999
).
23.
G.
Langer
,
J.
Hartmann
, and
M.
Reichling
,
Rev. Sci. Instrum.
68
,
1510
(
1997
).
24.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16474
(
1993
).
25.
A. A.
Maznev
,
J.
Hartmann
, and
M.
Reichling
,
J. Appl. Phys.
78
,
5266
(
1995
).
26.
B.
Li
,
L.
Oittuerm
,
J. P.
Roger
,
D.
Fournier
, and
E.
Welsch
,
Rev. Sci. Instrum.
71
,
5
(
2000
).
27.
It was found that the probe beam contained high order spatial modes giving rise to unwanted structure in the phase profile. This issue was addressed by pinhole filtering the probe beam.
28.
D. H.
Hurley
,
O. B.
Wright
,
O.
Matsuda
, and
S. L.
Shinde
,
J. Appl. Phys.
107
,
023521
(
2010
).
29.
R. J.
Stoner
and
H. J.
Maris
,
Phys. Rev. B
48
,
16373
(
1993
).
30.
W.
Hayes
,
M. C. K.
Wiltshire
,
R.
Berman
, and
P. R. W.
Hudson
,
J. Phys. C
6
,
1157
(
1973
).
31.
Initially the oxide layer on Ti is only 1-2 nm thick. Over several years the oxide layer can grow to 20 nm thick.
32.
CRC Handbook of Chemistry and Physics
, 92nd ed., edited by
W. M.
Haynes
(CRC Press/Taylor and Francis, Boca Raton, FL, Internet Version 2012).
You do not currently have access to this content.