We demonstrate that nanoindents formed in amorphous Si films, with dimensions as small as ∼20 nm, provide a means to seed solid phase crystallization. During post-indentation annealing at ∼600 °C, solid phase crystallization initiates from the indented sites, effectively removing the incubation time for random nucleation in the absence of seeds. The seeded crystallization is studied by optical microscopy, cross-sectional transmission electron microscopy, and electrical characterization via Hall measurements. Full crystallization can be achieved, with improved electrical characteristics attributed to the improved microstructure, using a lower thermal budget. The process is metal contaminant free and allows for selective area crystallization.

1.
G.
Beaucarne
, in
Thin film solar cells
, edited by
J.
Poortmans
and
V.
Arkhipov
(
Wiley
,
New York
,
2006
), Chap. 3.
2.
W.
Benzarti
,
F.
Plais
,
A. D.
Luca
, and
D.
Pribat
,
IEEE Trans. Electron Devices
51
,
345
(
2004
).
3.
S.-W.
Lee
,
E.
Kim
,
S.-S.
Han
,
H.-S.
Lee
,
D.-C.
Yun
,
K. M.
Lim
,
M.-S.
Yang
, and
C.-D.
Kim
,
IEEE Electron Device Lett.
24
,
174
(
2003
).
4.
T.
Matsudai
,
M.
Terauchi
,
M.
Yoshimi
,
N.
Yasuhara
,
Y.
Ushiku
, and
A.
Nakagawa
,
Jpn. J. Appl. Phys., Part 1
37
,
1103
(
1998
).
5.
W. C.
Omara
,
Liquid Crystal Displays; Manufacturing Science and Technology
(
Van Nostrand Reinhold
,
New York
,
1993
).
6.
C.
Spinella
,
S.
Lombardo
, and
F.
Priolo
,
J. Appl. Phys.
84
(
10
),
5383
(
1998
).
7.
M.
Kurosawa
,
N.
Kawabata
,
T.
Sadoh
, and
M.
Miyao
,
Appl. Phys. Lett.
95
,
132103
(
2009
).
8.
J. H.
Jung
,
K. J.
Lee
,
D. K.
Choi
,
J. H.
Shin
,
J. S.
You
, and
Y. B.
Kim
,
J. Electrochem. Soc.
157
,
H1
(
2010
).
9.
J. K.
Saha
,
K.
Haruta
,
M.
Yeo
,
T.
Koabayshi
, and
H.
Shirai
,
Sol. Energy Mater. Sol Cells
93
,
1154
(
2009
).
10.
M. K.
Hatalis
and
D. W.
Greve
,
J. Appl. Phys.
63
(
7
),
2260
(
1987
).
11.
D. T.
Britton
,
A.
Hempel
,
M.
Harting
,
G.
Kogel
,
P.
Sperr
,
W.
Triftshauser
,
C.
Arendse
, and
D.
Knoesen
,
Phys. Rev. B
64
,
075403
(
2001
).
12.
G.
Liu
and
S. J.
Fonash
,
Appl. Phys. Lett.
55
,
660
(
1989
).
13.
T.
Sameshima
,
S.
Usui
, and
M.
Sekiya
,
IEEE Electron Device Lett.
7
(
5
),
276
(
1986
).
14.
A.
Slaoui
,
F.
Foulon
, and
P.
Siffert
,
J. Appl. Phys.
67
,
6197
(
1990
).
15.
G.
Radnoczi
,
A.
Robertsson
,
H. T. G.
Hentzell
,
S. F.
Gong
, and
M. A.
Hasan
,
J. Appl. Phys.
69
,
6394
(
1991
).
16.
H.
Kim
,
D.
Kim
,
G.
Lee
,
D.
Kim
, and
S. H.
Lee
,
Sol. Energy Mater. Sol. Cells
74
,
323
(
2002
).
17.
J. E.
Bradby
,
J. S.
Williams
,
J.
Wong-Leung
,
M. V.
Swain
, and
P.
Munroe
,
J. Mater. Res.
16
,
1500
(
2001
).
18.
B.
Haberl
,
J. E.
Bradby
,
S.
Ruffell
,
J. S.
Williams
, and
P.
Munroe
,
J. Appl. Phys.
100
,
013520
(
2006
).
19.
S.
Ruffell
,
J. E.
Bradby
, and
J. S.
Williams
,
Appl. Phys. Lett.
89
,
091919
(
2006
).
20.
V.
Domnich
,
Y.
Gogotsi
, and
S.
Dub
,
Appl. Phys. Lett.
76
,
2214
(
2000
).
21.
G. M.
Pharr
,
W. C.
Oliver
, and
D. S.
Harding
,
J. Mater. Res.
6
,
1129
(
1991
).
22.
S.
Ruffell
,
J. E.
Bradby
, and
J. S.
Williams
,
Appl. Phys. Lett.
90
,
131901
(
2007
).
23.
S.
Ruffell
,
B.
Haberl
,
S.
Koenig
,
J. E.
Bradby
, and
J. S.
Williams
,
J. Appl. Phys.
105
,
093513
(
2009
).
24.
R. M.
Langford
and
A. K.
Petford-Long
,
J. Vac. Sci. Technol. A
19
,
2186
(
2001
).
25.
R.
Rao
,
J. E.
Bradby
,
S.
Ruffell
, and
J. S.
Williams
,
Microelectron. J.
38
,
722
(
2007
).
26.
N.
Higashi
,
G.
Nakagawa
,
T.
Asano
,
M.
Miyasak
, and
J.
Stoemenos
,
Jpn. J. Appl. Phys.
45
,
4347
(
2006
).
27.
G.
Nakagawa
and
R.
Asano
,
Jpn. J. Appl. Phys.
47
,
3036
(
2008
).
28.
K.
Toko
,
H.
Kanno
,
A.
Kenjo
,
T.
Sadoh
,
T.
Asano
, and
M.
Miyao
,
Appl. Phys. Lett.
,
91
,
042111
(
2007
).
29.
B.
Haberl
,
A. C. Y.
Liu
,
J. E.
Bradby
,
S.
Ruffell
,
J. S.
Williams
, and
P.
Munroe
,
Phys. Rev. B: Condens. Matter Mater.
79
,
155209
(
2009
).
30.
J.
Barrido
,
S.
Ruffell
, and
J. S.
Williams
, “Effect of nanoindentation conditions and a-Si preparation on seeded polycrystalline Si” (unpublished)
You do not currently have access to this content.