We present an extended model for B clustering in crystalline or in preamorphized Si and with validity under conditions below and above the equilibrium solid solubility limit of B in Si. This model includes boron-interstitial clusters (BICs) with BnIm configurations—complexes with n B atoms and m Si interstitials—larger (n > 4), and eventually more stable, than those included in previous models. In crystalline Si, the formation and dissolution pathways into large BICs configurations require high B concentration and depend on the flux of Si interstitials. In the presence of high Si interstitial flux, large BICs with a relatively large number of interstitials (mn) are formed, dissolving under relatively low thermal budgets. On the contrary, for low Si interstitial flux large BICs with few interstitials (m ≪ n) can form, which are more stable than small BICs, and whose complete dissolution requires very intense thermal budgets. We have also investigated the kinetics of large BICs in preamorphized Si, both experimentally and theoretically. B was implanted at a high-dose into preamorphized Si, and the B precipitation was studied by transmission electron microscopy and by sheet resistance and Hall measurement techniques. A simplified model for B clustering and redistribution in amorphous Si is proposed, including the experimental value for the B diffusivity in amorphous Si and the energetics of BICs. Our model suggests that B2, B3I, B4I and B4I2 clusters are the most energetically favored configurations, with relative abundance depending on B concentration. After recrystallization, thermal anneals up to 1100 °C evidence that BICs evolve under very low flux of Si interstitials under the particular experimental conditions considered. Simulations indicate that for very high B concentrations and low Si interstitial flux a significant fraction of the initial small BICs evolves into larger and very stable BIC configurations that survive even after intense thermal budgets, as confirmed by energy filtered transmission electron microscopy analyses. The correlation between simulations and Hall measurements on these samples suggest that hole mobility is significantly degraded by the presence of a high concentration of BICs.

1.
See International Technology Roadmap for Semiconductors, http://public.itrs.net (
2010
).
2.
A.
Armigliato
,
D.
Nobili
,
P.
Ostoja
,
M.
Servidori
, and
S.
Solmi
, in
Semiconductor Silicon 1977
, edited by
H.
Huff
and
E.
Sirtl
(
The Electrochemical Society
,
Princeton, NJ
,
1977
), Vol.
77–2
, pp.
638
.
3.
S. C.
Jain
,
W.
Schoenmaker
,
R.
Lindsay
,
P. A.
Stolk
,
S.
Decoutere
,
M.
Willander
, and
H. E.
Maes
,
J. Appl. Phys.
91
,
8919
(
2002
).
4.
L.
Pelaz
,
G. H.
Gilmer
,
H.-J.
Gossmann
,
J. M.
Poate
,
C. S.
Rafferty
,
M.
Jaraiz
, and
J.
Barbolla
,
Appl. Phys. Lett.
74
,
3657
(
1999
).
5.
M.
Aboy
,
L.
Pelaz
,
L. A.
Marques
,
P.
Lopez
, and
J.
Barbolla
,
J. Appl. Phys.
97
,
103520
(
2005
), and references therein.
6.
A.
Mokhberi
,
P. B.
Griffin
,
J. D.
Plummer
,
E.
Paton
,
S.
McCoy
, and
K.
Elliott
,
IEEE Trans. Electron Devices
49
,
1183
(
2002
).
7.
J.-Y.
Jin
,
J.
Liu
,
U.
Jeong
,
S.
Mehta
, and
K.
Jones
,
J. Vac. Sci. Technol. B
20
,
422
(
2002
).
8.
F.
Cristiano
,
N.
Cherkashin
,
P.
Calvo
,
Y.
Lamrani
,
X.
Hebrasa
,
A.
Claverie
,
W.
Lerch
, and
S.
Paul
,
Mater. Sci. Eng. B
114-115
,
174
(
2004
).
9.
X.-Y.
Liu
,
W.
Windl
, and
M. P.
Masquelier
,
Appl. Phys. Lett.
77
,
2018
(
2000
).
10.
T. J.
Lenosky
,
B.
Sadigh
,
S. K.
Theiss
,
M. J.
Caturla
, and
T. D.
de la Rubia
,
Appl. Phys. Lett.
77
,
1834
(
2000
).
11.
W.
Luo
and
P.
Clancy
,
J. Appl. Phys.
89
,
1596
(
2001
).
12.
P.
Alippi
,
P.
Ruggerone
, and
L.
Colombo
,
Phys. Rev. B
69
,
125205
(
2004
).
13.
F.
Cristiano
,
X.
Hebras
,
N.
Cherkashin
,
A.
Claverie
,
W.
Lerch
, and
S.
Paul
,
Appl. Phys. Lett.
83
,
5407
(
2005
).
14.
S.
Boninelli
.
S.
Mirabella
,
E.
Bruno
,
F.
Priolo
,
F.
Cristiano
,
A.
Claverie
,
D.
De Salvador
,
G.
Bisognin
, and
E.
Napolitani
,
Appl. Phys. Lett.
91
,
031905
(
2007
).
15.
D.
De Salvador
,
E.
Napolitani
,
G.
Bisognin
,
A.
Carnera
,
E.
Bruno
,
S.
Mirabella
,
G.
Impellizzeri
, and
F.
Priolo
,
Mater. Sci. Eng. B
124-125
,
32
(
2005
).
16.
V. C.
Venezia
,
R.
Duffy
,
L.
Pelaz
,
M. J. P.
Hopstaken
,
G. C. J.
Maas
,
T.
Dao
,
Y.
Tamminga
, and
P.
Graat
,
Mater. Sci. Eng. B
124-125
,
245
(
2005
).
17.
D.
DeSalvador
,
G.
Bisognin
,
M.
Di Marino
,
E.
Napolitani
,
A.
Carnera
,
H.
Graoui
,
M. A.
Foad
,
F.
Boscherini
, and
S.
Mirabella
,
Appl. Phys. Lett.
89
,
241901
(
2006
).
18.
A.
Mattoni
and
L.
Colombo
,
Phys. Rev. B
69
,
045204
(
2004
).
19.
G.
Masetti
,
M.
Severi
, and
S.
Solmi
,
IEEE Trans. Electronic Devices
30
,
764
(
1983
).
20.
L.
Romano
,
E.
Napolitani
,
V.
Privitera
,
S.
Scalese
,
A.
Terrasi
,
S.
Mirabella
, and
M. G.
Grimaldi
,
Mater. Sci. Eng. B
102
,
49
(
2003
).
21.
L.
Pelaz
,
L. A.
Marqués
,
M.
Aboy
,
P.
López
, and
J.
Barbolla
,
Comp. Mater. Sci.
33
,
92
(
2005
).
22.
G. H.
Gilmer
,
T.
Diaz de la Rubia
,
D. M.
Stock
, and
M.
Jaraiz
,
Nucl. Instrum. Methods B
102
,
247
(
1995
).
23.
A.
Bongiorno
,
L.
Colombo
, and
T.
Diaz de la Rubia
,
Europhys. Lett.
43
,
695
(
1998
).
24.
B.
Sadigh
,
T. J.
Lenosky
,
S. K.
Theiss
,
M.-J.
Caturla
,
T.
Diaz de la Rubia
, and
M. A.
Foad
,
Phys. Rev. Lett.
83
,
4341
(
1999
).
25.
H.
Bracht
,
E. E.
Haller
, and
R.
Clark-Phelps
,
Phys. Rev. Lett.
81
,
393
(
1998
).
26.
N. E. B.
Cowern
,
G.
Mannino
,
P. A.
Stolk
,
F.
Roozeboom
,
H. G. A.
Huizing
,
J. G. M.
van Berkum
,
F.
Cristiano
,
A.
Claverie
, and
M.
Jaraiz
,
Phys. Rev. Lett.
82
,
4460
(
1999
).
27.
More configurations with larger amount of B atoms and Si interstitial defects could be included in the model. In fact, experiments suggested that the observed large BICs could contain hundred of atoms. However, the inclusion of a large amount of stable BIC configurations in the model would complicate the parameter calibration enormously. Moreover, we have found that this simplification could be enough to describe the overall behavior evidenced by experimental data.
28.
S.
Mirabella
,
E.
Bruno
,
F.
Priolo
,
D.
De Salvador
,
E.
Napolitani
,
A. V.
Drigo
, and
A.
Carnera
,
Appl. Phys. Lett.
83
,
680
(
2003
).
29.
T. E.
Haynes
,
D. J.
Eaglesham
,
P. A.
Stolk
,
H.-J.
Gossmann
,
D. C.
Jacobson
, and
J. M.
Poate
,
Appl. Phys. Lett.
69
,
1376
(
1996
).
30.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
, vol. 1 Stopping and Ranges of Ions in Matter (
Pergamon
,
New York
,
1984
), See www.srim.org.
31.
M.
Aboy
,
L.
Pelaz
,
P.
Lopez
,
E.
Bruno
,
S.
Mirabella
and
E.
Napolitani
,
Mater. Sci. Eng. B
154-155
,
247
(
2008
).
32.
S.
Mirabella
,
D.
De Salvador
,
E.
Bruno
,
E.
Napolitani
,
E. F.
Pecora
,
S.
Boninelli
and
F.
Priolo
,
Phys. Rev. Lett.
100
,
155901
(
2008
).
33.
In order to ensure that EOR defects are far enough and do not interact with B atoms, reference experiments (not shown in this article) were also performed on a 900 nm-wide, molecular beam epitaxy (MBE) grown, Si film containing a 50 nm-wide Si1-yCy layer (y = 0.3 at.%) at a depth of 450 nm (which acts as a trap for Is). Experimental results with and without the Si1-yCy were practically the same in all samples.
34.
M.
Aboy
,
L.
Pelaz
,
P.
López
, L.
A.
Marqués
,
R.
Duffy
, and
V. C.
Venezia
,
Appl. Phys. Lett.
88
,
191917
(
2006
).
35.
R. F.
Egerton
,
Electron Energy-Loss Spectroscopy in the Electron Microscope
, 2nd ed. (
New York
,
Plenum
,
1996
).
36.
S.
Boninelli
,
F.
Iacona
,
Giorgia
Franzò
,
C.
Bongiorno
,
C.
Spinella
and
F.
Priolo
,
J. Phys.: Condens. Matter
19
,
225003
(
2007
).
37.
P.
Pichler
, in
Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon
, edited by
S.
Selberherr
(
Springer
,
Wien
,
2004
).
38.
The systematically slight overestimation of [Bact]max at long annealing times (at which B diffusion is not negligible) leads us to slightly underestimated values for μpMasetti.
39.
F.
Severac
,
F.
Cristiano
,
E.
Bedel-Pereira
,
P. F.
Fazzini
,
J.
Boucher
,
W.
Lerch
, and
S.
Hamm
,
J. Appl. Phys.
107
,
123711
(
2010
).
40.
T.
Clarysse
,
J.
Bogdanowicz
,
J.
Goossens
,
A.
Moussa
,
E.
Rosseel
,
W.
Vandervorst
,
D. H.
Petersen
,
R.
Lin
,
P. F.
Nielsen
,
O.
Hansen
,
G.
Merklin
,
N. S.
Bennett
, and
N. E. B.
Cowern
,
Mater. Sci. Eng. B
154-155
,
24
(
2008
).
41.
F.
Severac
,
F.
Cristiano
,
E.
Bedel-Pereira
,
P. F.
Fazzini
,
W.
Lerch
,
S.
Paul
,
X.
Hebras
, and
F.
Giannazzo
,
J. Appl. Phys.
105
,
043711
(
2009
).
42.
L.
Romano
,
A. M.
Piro
,
M. G.
Grimaldi
,
G.
Bisognin
,
E.
Napolitani
, and
D.
De Salvador
,
Phys. Rev. Lett.
97
,
136605
(
2006
).
43.
G.
Bisognin
,
D.
De Salvador
,
E.
Napolitani
,
A.
Carnera
,
E.
Bruno
,
S.
Mirabella
,
F.
Priolo
, and
A.
Mattoni
,
Semicond. Sci. Techol.
21
,
L41
(
2006
).
You do not currently have access to this content.