We present an extended model for B clustering in crystalline or in preamorphized Si and with validity under conditions below and above the equilibrium solid solubility limit of B in Si. This model includes boron-interstitial clusters (BICs) with BnIm configurations—complexes with n B atoms and m Si interstitials—larger (n > 4), and eventually more stable, than those included in previous models. In crystalline Si, the formation and dissolution pathways into large BICs configurations require high B concentration and depend on the flux of Si interstitials. In the presence of high Si interstitial flux, large BICs with a relatively large number of interstitials (m ≥ n) are formed, dissolving under relatively low thermal budgets. On the contrary, for low Si interstitial flux large BICs with few interstitials (m ≪ n) can form, which are more stable than small BICs, and whose complete dissolution requires very intense thermal budgets. We have also investigated the kinetics of large BICs in preamorphized Si, both experimentally and theoretically. B was implanted at a high-dose into preamorphized Si, and the B precipitation was studied by transmission electron microscopy and by sheet resistance and Hall measurement techniques. A simplified model for B clustering and redistribution in amorphous Si is proposed, including the experimental value for the B diffusivity in amorphous Si and the energetics of BICs. Our model suggests that B2, B3I, B4I and B4I2 clusters are the most energetically favored configurations, with relative abundance depending on B concentration. After recrystallization, thermal anneals up to 1100 °C evidence that BICs evolve under very low flux of Si interstitials under the particular experimental conditions considered. Simulations indicate that for very high B concentrations and low Si interstitial flux a significant fraction of the initial small BICs evolves into larger and very stable BIC configurations that survive even after intense thermal budgets, as confirmed by energy filtered transmission electron microscopy analyses. The correlation between simulations and Hall measurements on these samples suggest that hole mobility is significantly degraded by the presence of a high concentration of BICs.
Skip Nav Destination
Article navigation
1 October 2011
Research Article|
October 14 2011
Kinetics of large B clusters in crystalline and preamorphized silicon
Maria Aboy;
Maria Aboy
a)
1
Universidad de Valladolid
, Campus Miguel Delibes, 47011 Valladolid, Spain
Search for other works by this author on:
Lourdes Pelaz;
Lourdes Pelaz
1
Universidad de Valladolid
, Campus Miguel Delibes, 47011 Valladolid, Spain
Search for other works by this author on:
Elena Bruno;
Elena Bruno
2MATIS-IMM-CNR, Via Santa Sofia 64, I-95123 Catania,
Italy
Search for other works by this author on:
Salvo Mirabella;
Salvo Mirabella
2MATIS-IMM-CNR, Via Santa Sofia 64, I-95123 Catania,
Italy
Search for other works by this author on:
Simona Boninelli
Simona Boninelli
b)
3Italian Institute Technol. Via Morego 30, I-16163 Genova,
Italy
Search for other works by this author on:
a)
Author to whom correspondence should be addressed. Electronic mail: marabo@tel.uva.es.
b)
Present address: MATIS-IMM-CNR, Via Santa Sofia 64, I-95123 Catania, Italy.
J. Appl. Phys. 110, 073524 (2011)
Article history
Received:
July 28 2011
Accepted:
August 11 2011
Citation
Maria Aboy, Lourdes Pelaz, Elena Bruno, Salvo Mirabella, Simona Boninelli; Kinetics of large B clusters in crystalline and preamorphized silicon. J. Appl. Phys. 1 October 2011; 110 (7): 073524. https://doi.org/10.1063/1.3639280
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Pay-Per-View Access
$40.00
Citing articles via
A step-by-step guide to perform x-ray photoelectron spectroscopy
Grzegorz Greczynski, Lars Hultman
GaN-based power devices: Physics, reliability, and perspectives
Matteo Meneghini, Carlo De Santi, et al.
Celebrating notable advances in compound semiconductors: A tribute to Dr. Wladyslaw Walukiewicz
Kirstin Alberi, Junqiao Wu, et al.