To accurately evaluate the Ge metal-insulator-semiconductor (MIS) interface trap density (Dit) by employing the conventional method for Si MIS capacitors on Ge MIS capacitors, we have investigated the impact of majority and minority carrier responses on C-V curves and/or the energy distributions of Dit. It is found that the high-frequency C-V curve, which does not include the majority carrier response with interface traps, cannot be obtained near room temperature (RT) even at 1 MHz. Therefore, to accurately evaluate the Dit values using the Terman method, the C-V curve has to be measured at an appropriate temperature. Furthermore, in the conductance method, evaluations by the model including the narrow bandgap effects are needed to obtain accurate Dit of the Ge MIS interface near RT. Through such accurate evaluation, the interface properties with different kinds of interfacial layers have been investigated. Although the GeO2/Ge interface has a low Dit and a fixed oxide charge density, the total charged center density contributing to surface potential fluctuation is larger than those for the GeOx/Ge and GeOxNy/Ge interfaces. These results suggest that the evaluation methods of the Ge MIS interface taking into account the appropriate carrier responses is quite important to obtain accurate Ge MIS interface properties.

1.
L. M.
Terman
,
Solid-State Electron.
5
,
285
(
1962
).
2.
C. N.
Berglund
,
IEEE Trans. Electron Devices
13
,
701
(
1966
).
3.
E. H.
Nicollian
and
A.
Goetzberger
,
Bell Syst. Tech. J.
46
,
1055
(
1967
).
4.
K.
Prabhakaran
and
T.
Ogino
,
Surf. Sci.
325
,
263
(
1995
).
5.
K.
Prabhakaran
,
F.
Maeda
,
Y.
Watanabe
, and
T.
Ogino
,
Thin Solid Films
369
,
289
(
2000
).
6.
H.
Nomura
,
K.
Kita
,
K.
Kyuno
, and
A.
Toriumi
, in
Extended Abstracts of the 2005 International Conference on Solid State Devices and Materials
,
Kobe, Japan
, 12–15 September 2005, p.
858
.
7.
Y.
Fukuda
,
T.
Ueno
,
S.
Hirono
, and
S.
Hashimoto
,
Jpn. J. Appl. Phys.
44
,
6981
(
2005
).
8.
H.
Matsubara
,
T.
Sasada
,
M.
Takenaka
, and
S.
Takagi
,
Appl. Phys. Lett.
93
,
032104
(
2008
).
9.
C. H.
Lee
,
T.
Tabata
,
T.
Nishimura
,
K.
Nagashio
,
K.
Kita
, and
A.
Toriumi
,
Appl. Phys. Express
2
,
071404
(
2009
).
10.
D.
Kuzum
,
A. J.
Pethe
,
T.
Krishnamohan
, and
K. C.
Saraswat
,
IEEE Trans. Electron Devices
56
,
648
(
2009
).
11.
Y.
Nakakita
,
R.
Nakane
,
T.
Sasada
,
H.
Matsubara
,
M.
Takenaka
, and
S.
Takagi
,
Int. Electron Devices Meet.
877
(
2008
).
12.
P.
Zimmarman
,
G.
Nicholas
,
B.
De Jaeger
,
B.
Kaczer
,
A.
Stesmans
,
L.-A.
Rangnarsson
,
D. P.
Brunco
,
F. E.
Leys
,
M.
Caymax
,
G.
Winderickx
,
K.
Opsomer
,
M.
Meuris
, and
M. M.
Heyns
,
Int. Electron Devices Meet.
655
(
2006
).
13.
N.
Taoka
,
M.
Harada
,
Y.
Yamashita
,
T.
Yamamoto
,
N.
Sugiyama
, and
S.
Takagi
,
Appl. Phys. Lett.
92
,
113511
(
2008
).
14.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley-Interscience
,
New York
,
1981
), p.
850
.
15.
N.
Taoka
,
T.
Yamamoto
,
M.
Harada
,
Y.
Yamashita
,
N.
Sugiyama
, and
S.
Takagi
,
J. Appl. Phys.
106
,
044506
(
2009
).
16.
A.
Dimoulas
,
G.
Vellianitis
,
G.
Mavrou
,
E. K.
Evangelou
, and
A.
Sotiropoulos
,
Appl. Phys. Lett.
86
,
223507
(
2005
).
17.
K.
Martens
,
C. O.
Chui
,
G.
Brammertz
,
B.
De Jaeger
,
D.
Kuzum
,
M.
Meuris
,
M. M.
Heyns
,
T.
Krishnamohan
,
K.
Saraswat
,
H. E.
Maes
, and
G.
Groeseneken
,
IEEE Trans. Electron Devices
55
,
547
(
2008
).
18.
N.
Taoka
,
K.
Ikeda
,
Y.
Yamashita
,
N.
Sugiyama
, and
S.
Takagi
,
Semicond. Sci. Technol.
22
,
S114
(
2007
).
19.
J. R.
Brews
,
J. Appl. Phys.
43
,
2306
(
1972
).
You do not currently have access to this content.