The flux-pinning-induced stress and magnetostriction of a functionally graded type-II superconductor shaped as a rectangular slab are analyzed. By using the plane strain approach, the exact solution of the three-dimensional (3D) magneto-elastic problem is found. All the stresses, strains, and magnetostriction in the graded direction are first expressed in terms of the flux-density profile in the slab, and all these expressions are valid for any critical-state model jc=jc(B). Then, based on the Bean model, i.e., jc=const, an extensive analysis is made for three cases of applied magnetic fields, i.e., increasing field, decreasing field, and field cooling. And the emphasis is put on the effects of both the applied magnetic field and the graded index of the slab on the maximum tensile stress and the magnetostriction.

1.
F. C.
Moon
and
P.-Z.
Chang
,
Appl. Phys. Lett.
56
,
397
(
1990
).
2.
J. R.
Hull
,
E. F.
Hilton
,
T. M.
Mulcahy
,
Z. J.
Yang
,
A.
Lockwood
, and
M.
Strasik
,
J. Appl. Phys.
78
,
6833
(
1995
).
3.
J. R.
Hull
,
Semicond. Sci. Technol.
13
,
R1
(
2000
).
4.
L. K.
Kovalev
,
K. V.
Ilushin
,
V. T.
Penkin
,
K. L.
Kovalev
,
S. M. -A.M.-A.
Koneev
,
V. N.
Poltavets
,
A. E.
Larionoff
,
K. A.
Modestov
,
S. A.
Larionoff
,
W.
Gawalek
,
T.
Habisreuther
,
B.
Ostvald
,
K.-J.
Best
, and
T.
Strasser
,
Applied Superconductivity, Volume 1, Institute of Physics Series No. 167
(
Institute of Physics
,
Bristol
,
2000
), p.
1037
.
5.
M.
Murakami
,
Applied Superconductivity, Volume 1, Institute of Physics Series No. 167
(
Institute of Physics
,
Bristol
,
2000
), p.
7
.
6.
W.-K.
Chu
, in M2S Conference, Houston, TX,
2000
.
7.
Y.
Ren
,
R.
Weinstein
,
J.
Liu
,
R. P.
Sawh
, and
C.
Foster
,
Physica C
251
,
15
(
1995
).
8.
G.
Fuchs
,
G.
Krabbes
,
P.
Schätzle
,
S.
Gruss
,
P.
Stoye
,
T.
Staiger
,
K.-H.
Müller
,
J.
Fink
, and
L.
Schultz
,
Appl. Phys. Lett.
70
,
117
(
1997
).
9.
H.
Ikuta
,
N.
Hirota
,
Y.
Nakayama
,
K.
Kishio
, and
K.
Kitazawa
,
Phys. Rev. Lett.
70
,
2166
(
1993
).
10.
T. H.
Johansen
,
J.
Lothe
, and
H.
Bratsberg
,
Phys. Rev. Lett.
80
,
4757
(
1998
).
11.
T. H.
Johansen
,
Phys. Rev. B
59
,
11187
(
1999
).
12.
T. H.
Johansen
,
Phys. Rev. B
60
,
9690
(
1999
).
13.
T. H.
Johansen
,
H.
Bratsberg
, and
J.
Lothe
,
Supercond. Sci. Technol.
11
,
1186
(
1998
).
14.
T. H.
Johansen
,
C.
Wang
,
Q. Y. Chen
, and W. K. Chu.
J Appl. Phys.
88
,
2730
(
2000
).
15.
T. H.
Johansen
and
D. V.
Shantsev
,
Supercond. Sci. Technol.
16
,
1109
(
2003
).
16.
Y.-H.
Zhou
and
H.-D.
Yong
,
Phys. Rev. B
76
,
094523
(
2007
).
17.
H.-D.
Yong
,
Y.-H.
Zhou
, and
J.
Zeng
,
J. Appl. Phys.
104
,
113902
(
2008
).
18.
X.
Feng
and
Y.-H.
Zhou
,
J. Appl. Phys.
107
,
113927
(
2010
).
19.
Z. W.
Gao
and
Y.-H.
Zhou
,
Mod. Phys. Lett. B
23
,
825
(
2009
).
20.
M. K.
Kassir
and
G. C.
Sih
,
Mechanics of Fracture 2
(
Noordhoff
,
Groningen
,
1975
).
21.
N.
Nabialek
,
H.
Szymczak
,
V. A.
Sirenko
, and
A. I.
D’ashenko
,
J. Appl. Phys.
84
,
3770
(
1998
).
22.
F.
Delale
and
F.
Erdogan
,
ASME J. Appl. Mech.
50
,
609
(
1983
).
23.
L. C.
Guo
and
N.
Noda
,
Int. J. Solids Struct.
44
,
6768
(
2007
).
24.
G. C.
Sih
and
E. P.
Chen
,
Mechanical Fracture 6
(
Nijhoff
,
The Hague
,
1981
).
25.
R. V.
Craster
and
C.
Arkinson
,
Q. J. Math.
47
,
183
(
1994
).
26.
X. Y.
Wang
,
Z. Z.
Zou
, and
D.
Wang
,
Int. J. Fract.
79
,
R51
(
1996
).
27.
N.
Jain
,
C. E.
Rousseau
, and
A.
Shukla
,
Theor. Appl. Fract. Mech.
42
,
155
(
2004
).
You do not currently have access to this content.