Using first-principles density functional theory based method we have performed a systematic investigations of the electronic structures, the structural and magnetic properties related to shape memory applications for Mn2NiAl,Mn2NiGa,Mn2NiSn and Mn2NiIn alloys. Our results confirm that all the alloys undergo a volume conserving martensitic transformation at low temperatures and that the low temperature stable phase is a non-modulated tetragonal one. The relative stabilities of the martensitic phases and the magnetic properties differ considerably for Mn2NiAl, Mn2NiGa and Mn2NiIn and Mn2NiSn. Details of the electronic structures suggest that the differences in hybridizations between the magnetic components are responsible for these trends. Quantitative estimates of the energetics and the magnetizations indicate that Mn2NiGa and Mn2NiAl are more promising candidates for shape memory applications.

1.
P. J.
Webster
,
K. R. A.
Ziebeck
,
S. L.
Town
, and
M. S.
Peak
,
Philos. Mag. B
49
,
295
(
1984
).
2.
P. J.
Brown
,
A. Y.
Bargawi
,
J.
Crangle
,
K.-U.
Neumann
, and
K. R. A.
Ziebeck
,
J. Phys. Condens. Matter
11
,
4715
(
1999
).
3.
K.
Ullakko
,
J. K.
Huang
,
C.
Kanter
,
V. V.
Kokorin
, and
R. C.
O’Handley
,
Appl. Phys. Lett.
69
,
1966
(
1996
)
4.
V. A.
Chernenko
,
V. V.
Kokorin
,
O. M.
Babii
, and
I. K.
Zasimchuk
,
Intermetallics
6
,
29
(
1998
).
5.
S. J.
Murray
,
M.
Marioni
,
S. M.
Allen
,
R. C.
O’Handley
, and
T. A.
Lograsso
,
Appl. Phys. Lett.
77
,
886
(
2000
)
6.
A.
Sozinov
,
A. A.
Likhachev
, and
K.
Ullakko
,
IEEE Trans. Magn.
38
,
2814
(
2002
).
7.
X.
Jin
,
M.
Marioni
,
D.
Bono
,
S. M.
Allen
,
R. C.
O’Handley
, and
T. Y.
Hsu
,
J. Appl. Phys.
91
,
8222
(
2002
).
8.
G. D.
Liu
,
X. F.
Dai
,
S. Y.
Yu
,
Z. Y.
Zhu
,
J. L.
Chen
,
G. H.
Wu
,
H.
Zhu
, and
J. Q.
Qiao
,
Phys. Rev. B
74
,
054435
(
2006
).
9.
Y.
Sutou
,
Y.
Imano
,
N.
Koeda
,
T.
Omori
,
R.
Kainuma
,
K.
Ishida
, and
K.
Oikawa
,
Appl. Phys. Lett.
85
,
4358
(
2004
)
10.
P. J.
Brown
,
A. P.
Gandy
,
K.
Ishida
,
R.
Kainuma
,
T.
Kanomata
,
K. U.
Neumann
,
K.
Oikawa
,
B.
Ouladdiaf
, and
K. R. A.
Ziebeck
,
J. Phys. Condens. Matter
18
,
2249
(
2006
).
11.
T.
Krenke
,
E.
Duman
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
,
Nature Mat.
4
,
450
(
2005
)
12.
T.
Krenke
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
,
Phys. Rev. B
72
,
014412
(
2005
)
13.
T.
Krenke
,
M.
Acet
,
E. F.
Wassermann
,
X.
Moya
,
L.
Mañosa
, and
A.
Planes
,
Phys. Rev. B
73
,
174413
(
2006
)
14.
T.
Büsgen
,
J.
feydt
,
R.
Hassdorf
,
S.
Thienhaus
,
M.
Moske
,
M.
Boese
,
A.
Zayak
, and
P.
Entel
,
Phys. Rev. B
70
,
014111
(
2004
).
15.
A.
Planes
,
L.
Mañosa
, and
M.
Acet
,
J. Phys. Condens. Matter
21
,
233201
(
2009
).
16.
A.
Ayuela
,
J.
Enkovaara
,
K.
Ullakko
, and
R. M.
Nieminen
,
J. Phys. Condens. Matter
11
,
2017
(
1999
).
17.
H. C.
Xuan
,
S. C.
Ma
,
Q. Q.
Cao
,
D. H.
Wang
, and
Y. W.
Du
,
J. Alloys Compd.
509
,
5761
(
2011
).
18.
S. R.
Braman
,
S.
Banik
,
A. K.
Shukla
,
C.
Kamal
, and
A.
Chakrabarti
,
Europhys. Lett.
80
,
57002
(
2007
).
19.
H.
Luo
,
G.
Liu
,
F.
Meng
,
S.
Li
,
W.
Zhu
,
G.
Wu
,
X.
Zhu
, and
C.
Jiang
,
Physica B
405
,
3092
(
2010
).
20.
A.
Chakrabarti
and
S. R.
Barman
,
Appl. Phys. Lett.
94
,
161908
(
2009
).
21.
H.
Luo
,
G.
Liu
,
Z.
Feng
,
Y.
Li
,
L.
Ma
,
G.
Wu
,
X.
Zhu
,
C.
Jiang
, and
H.
Xu
,
J. Magn. Magn. Mater.
321
,
4063
(
2009
).
22.
S.
Paul
and
S.
Ghosh
,
J. Phys. Condens. Matter
23
,
206003
(
2011
).
23.
V. A.
Chernenko
,
J.
Pons
,
C.
Segui
, and
E.
Cesari
,
Acta Mater.
50
,
53
(
2002
).
24.
A. T.
Zayak
,
W. A.
Adeagabo
,
P.
Entel
, and
K. M.
Rabe
,
Appl. Phys. Lett.
88
,
111903
(
2006
).
25.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev. B
136
,
864
(
1964
).
26.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev. A
140
,
1133
(
1965
).
27.
L.
Nordström
and
D. J.
Singh
,
Phys. Rev. Lett.
76
,
4420
(
1996
).
28.
L.
Nordström
and
A.
Mavromas
,
Europhys. Lett.
49
,
775
(
2000
).
29.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhorf
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
30.
See http://www.Quantum-Espresso.org/andhttp://www.pwscf.org. Quantum-Espresso is a community project for high-quality quantum-simulation software, based on density functional theory, and coordinated by Paolo Gianozzi.
31.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
32.
S. G.
Louie
,
S.
Froyen
, and
M. L.
Cohen
,
Phys. Rev. B
26
,
1738
(
1982
).
33.
J. P.
Perdew
,
Electronic Structure of Solids
, edited by
P.
Ziesche
and
H.
Eschrig
(
Akademic Verlag
,
Berlin
,
1991
), pp.
11
.
34.
R. B.
Helmholdt
and
K. H. J.
Buschow
,
J. Less-Comm. Metals
128
,
167
(
1987
).
35.
S. R.
Barman
,
A.
Chakrabarti
,
S.
Singh
,
S.
Banik
,
S.
Bhardwaj
,
P. L.
Paulose
, and
B. A.
Chalke
,
Phys. Rev. B
78
,
134406
(
2008
).
36.
A. T.
Zayak
,
P.
Entel
,
J.
Enkovaara
,
A.
Ayuela
, and
R. M.
Nieminen
,
J. Phys. Condens. Matt.
15
,
159
(
2003
).
37.
J.
Enkovaara
,
O.
Heczko
,
A.
Ayuela
, and
R. M.
Nieminen
,
Phys. Rev. B
67
,
212405
(
2003
).
38.
Q.
Hu
,
C.
Li
,
R.
Yang
,
S. E.
Kulkova
,
D. I.
Bazhanov
,
B.
Johansson
, and
L.
Vitos
,
Phys. Rev. B
79
,
144112
(
2009
).
39.
I.
Galanakis
and
E.
Sasioglu
,
Appl. Phys. Lett.
98
,
102514
(
2011
).
You do not currently have access to this content.