A bottom-gate, bottom-contact (BGBC) organic thin-film transistor (OTFT) with carrier-doped regions over source-drain electrodes was investigated. Device simulation with our originally developed device simulator demonstrates that heavily doped layers (p+ layers) on top of the source-drain contact region can compensate the deficiency of charge carriers at the source-channel interface during transistor operation, leading to the increase of the drain current and the apparent field-effect mobility. The phenomena expected with the device simulation were experimentally confirmed in typical BGBC pentacene thin-film transistors. The 5-nm-thick p+ layers, located 10 nm (or 20 nm) over the source-drain electrodes, were prepared by coevaporation of pentacene and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane as an acceptor dopant. Since the molecular doping in this study can increase the drain current without positive shift of threshold voltage, p+ layers were formed precisely on top of the source-drain regions. This study shows that common inferior characteristics of bottom-contact OTFT devices mainly derive from the supply shortage of charge carriers to the channel region. The importance of reliable molecular doping techniques or heavily doped semiconductor materials for improving OTFT device performance is clearly suggested.

1.
J.
Zaumseil
and
H.
Sirringhaus
,
Chem. Rev. (Washington, D.C.)
107
,
1296
(
2007
).
2.
H. E.
Katz
and
J.
Huang
,
Annu. Rev. Mater. Res.
39
,
71
(
2009
).
3.
S.
Tanida
,
K.
Noda
,
H.
Kawabata
, and
K.
Matsushige
,
Synth. Met.
160
,
1574
(
2010
).
4.
R.
Schroeder
,
L. A.
Majewski
, and
M.
Grell
,
Appl. Phys. Lett.
84
,
1004
(
2004
).
5.
K.
Fujimori
,
K.
Shigeto
,
T.
Hamano
,
T.
Minari
,
T.
Miyadera
,
K.
Tsukagoshi
, and
Y.
Aoyagi
,
Appl. Phys. Lett.
90
,
193507
(
2007
).
6.
J.
Li
,
X.-W.
Zhang
,
L.
Zhang
,
K.
-ul-Haq
,
X.-Y.
Jiang
,
W.-Q.
Zhu
, and
Z.-L.
Zhang
,
Solid State Commun.
149
,
1826
(
2009
).
7.
S. P.
Tiwari
,
W. J.
Potscavage
, Jr.
,
T.
Sajoto
,
S.
Barlow
,
S. R.
Marder
, and
B.
Kippelen
,
Org. Electron.
11
,
860
(
2010
).
8.
T.
Minakata
,
I.
Nagoya
, and
M.
Ozaki
,
J. Appl. Phys.
69
,
7354
(
1991
).
9.
A. R.
Brown
,
D. M.
de Leeuw
,
E. E.
Havinga
, and
A.
Pomp
,
Synth. Met.
68
,
65
(
1994
).
10.
M.
Gross
,
D. C.
Müller
,
H -G.
Nothofer
,
U.
Scherf
,
D.
Neher
,
C.
Bräuchle
, and
K.
Meerholz
,
Nature (London)
405
,
661
(
2000
).
11.
K.
Waltzer
,
B.
Maennig
,
M.
Pfeiffer
, and
K.
Leo
,
Chem. Rev. (Washington, D.C.)
107
,
1233
(
2007
).
12.
K.-H.
Yim
,
G. L.
Whiting
,
C. E.
Murphy
,
J. J. M.
Halls
,
J. H.
Burroughes
,
R. H.
Friend
, and
J.-S.
Kim
,
Adv. Mater.
20
,
3319
(
2008
).
13.
S.
Duhm
,
I.
Saltzmann
,
B.
Bröker
,
H.
Glowatzki
,
R. L.
Johnson
, and
N.
Koch
,
Appl. Phys. Lett.
95
,
093305
(
2009
).
14.
Y.
Ishikawa
,
Y.
Wada
, and
T.
Toyabe
,
J. Appl. Phys.
107
,
053709
(
2010
).
15.
Y.
Ishikawa
,
Y.
Wada
,
K.
Tsutsui
, and
T.
Toyabe
,
Jpn. J. Appl. Phys. Part 1
,
49
04DK01
(
2010
).
16.
K.
Harada
,
M.
Sumino
,
C.
Adachi
,
S.
Tanaka
, and
K.
Miyazaki
,
Appl. Phys. Lett.
96
,
253304
(
2010
).
17.
J.
Puigdollers
,
C.
Voz
,
A.
Orpella
,
R.
Quidant
,
I.
Martin
,
M.
Vetter
, and
R.
Alcubilla
,
Org. Electron.
5
,
67
(
2004
).
18.
O. D.
Jurchescu
,
J.
Baas
, and
T. T. M.
Palstra
,
Appl. Phys. Lett.
84
,
3061
(
2004
).
19.
S. D.
Wang
,
Y.
Yan
, and
K.
Tsukagoshi
,
Appl. Phys. Lett.
97
,
063307
(
2010
).
20.
O.
Marinov
,
M. J.
Deen
, and
B.
Iniquez
,
IEE Proc.: Circuits Devices Syst.
152
,
189
(
2005
).
21.
Y.
Abe
,
T.
Hasegawa
,
Y.
Takahashi
,
T.
Yamada
, and
Y.
Tokura
,
Appl. Phys. Lett.
87
,
153506
(
2005
).
22.
M. J.
Deen
,
M. H.
Kazemeini
, and
S.
Holdcroft
,
J. Appl. Phys.
103
,
124509
(
2008
).
23.
M. J.
Deen
,
O.
Marinov
,
U.
Zschieschang
, and
H.
Klauk
,
IEEE Trans. Electron Devices
56
,
2962
(
2009
).
24.
B. H.
Hamadani
and
D.
Natelson
,
Proc. IEEE
93
,
1306
(
2005
).
You do not currently have access to this content.