As state of the art flash memory technologies scale down to sub 30 nm node, conventional floating gate flash memory approaches its physical scaling limit mainly because of the high gate coupling ratio (GCR) requirement to secure proper memory window. Here, we report a novel flash memory device called Cr metal thin film memory (MTFM) that can circumvent the GCR issue and extend flash memory scalability by employing Cr thin film as a storage layer. Cr metal thin film memory devices with simple and low temperature processes produced a wide memory window of 10 V at the ±18 V voltage sweep with GCR of only 0.3. Such a large window can be adopted for multi-level cell operations, which can further increase the memory density. Also, retention measurement shows more than 10 years retention time due to higher energy barrier between Cr metal and tunnel oxide than conventional poly silicon and tunnel oxide. Cross section transmission electron microscope (TEM) images showed the structure and accurate dimensions of the Cr MTFM device with continuous Cr film and sharp interfaces. As for material characterizations, an amorphous like Cr phase was observed through TEM and x-ray diffraction (XRD). X-ray photoelectron spectroscopy (XPS) confirmed the Cr-Cr bond and Cr-O bond near the Cr surface after evaporation and rapid thermal annealing. This metal thin film memory may open a new route to achieve the terabit level flash memory.

1.
K.
Kim
,
Tech. Dig. - Int Electron. Devices Meet.
323
(
2005
).
2.
K.
Kim
and
J.
Choi
,
IEEE Non-Volatile Semiconductor Memory Workshop Dig.
9
11
, (
2006
).
3.
Y.
Shi
,
K.
Saito
,
H.
Ishikuro
, and
T.
Hiramato
,
Jpn. J. Appl. Phys. Part 1
38
,
2453
(
1999
).
4.
Z.
Liu
,
C.
Lee
,
V.
Narayanan
,
G.
Pei
, and
E. C.
Kan
,
IEEE Trans. Electron Devices
49
,
1606
(
2002
).
5.
W.
Guan
,
S.
Long
,
M.
Liu
,
Q.
Liu
,
Y.
Hu
,
Z.
Li
, and
R.
Jia
,
Solid State Electron.
51
,
806
(
2007
).
6.
A. J.
Hong
,
C.
Liu
,
Y.
Wang
,
J.
Kim
,
F.
Xiu
,
S.
Ji
,
J.
Zou
,
P. F.
Nealey
, and
L. K.
Wang
,
Nano Lett.
10
,
224
(
2010
).
7.
C.
Suryanarayana
and
M. G.
Norton
,
X-Ray Diffraction: A Practical Approach
(
Springer
,
London
,
1998
).
8.
A. M.
Salvi
,
J. E.
Castle
,
J. F.
Watts
, and
E.
Desimoni
,
Appl. Surf. Sci.
90
,
333
(
1995
).
9.
M. C.
Biesinger
,
C.
Brown
,
J. R.
Mycroft
.
R. D.
Davidson
, and
N. S.
McIntyre
,
Surf. Interface Anal.
36
,
1550
1563
(
2004
).
10.
D. A.
Papaconstantopoulos
,
Handbook of the Band Structures of Elemental Solids
, (
Plenum
,
New York
,
1985
).
11.
S. M.
Sze
,
Physics of Semiconductor Devices
(
Wiley
,
New York
,
1981
).
12.
International Technology Roadmap on Semiconductors, http://www.itrs.net/ (
2009
).
13.
A. J.
Hong
,
M.
Ogawa
,
K. L.
Wang
,
Y.
Wang
,
J.
Zou
,
Z.
Xu
, and
Y.
Yang
,
Appl. Phys. Lett.
93
,
023501
(
2008
).
14.
P. K.
Singh
,
G.
Bisht
,
R.
Hofmann
,
K.
Singh
,
N.
Krishna
, and
S.
Mahapatra
,
IEEE Electron Device Lett.
29
,
1389
(
2008
).
15.
C. H.
Lee
,
J.
Choi
,
Y.
Park
,
C.
Kang
,
B. I.
Choi
,
H.
Kim
,
H.
Oh
, and
W. S.
Lee
,
VLSI Technol. Dig.
,
118
(
2008
).
You do not currently have access to this content.