The out-of-plane thermal conductivity of polycrystalline silicon nanofilm is investigated by molecular dynamics simulation. The polycrystalline silicon nanofilm with a random shape of grains is generated by the three-dimensional Voronoi tessellation method. The out-of-plane thermal conductivity of polycrystalline silicon nanofilm at different temperature, film thickness, and average grain size is calculated by the Muller-Plathe method. The results indicate that the polycrystalline thermal conductivity is lower than that of the bulk single crystal and the single crystal nanofilm of silicon. The out-of-plane thermal conductivity of polycrystalline silicon nanofilm is insensitive to temperature and film thickness that is apparently larger than grain size, but mainly depends on the grain size.

1.
G. H.
Zhu
,
H.
Lee
,
Y. C.
Lan
,
X. W.
Wang
,
G.
Joshi
,
D. Z.
Wang
,
J.
Yang
,
D.
Vashaee
,
H.
Guilbert
,
A.
Pillitteri
,
M. S.
Dresselhaus
,
G.
Chen
, and
Z. F.
Ren
,
Phys. Rev. Lett.
102
,
196803
(
2009
).
2.
Y.
Ma
,
Q.
Hao
,
B.
Poudel
,
Y.
Lan
,
B.
Yu
,
D.
Wang
,
G.
Chen
, and
Z.
Ren
,
Nano Lett.
8
,
2580
(
2008
).
3.
W.
Kim
,
J.
Zide
,
A.
Gossard
,
D.
Klenov
,
S.
Stemmer
,
A.
Shakouri
, and
A.
Majumdar
,
Phys. Rev. Lett.
96
,
045901
(
2006
).
4.
C.
Wan
,
Z.
Qu
,
Y.
He
,
D.
Luan
, and
W.
Pan
,
Phys. Rev. Lett.
101
,
085901
(
2008
).
5.
L. K.
Wagner
and
J. C.
Grossman
,
Phys. Rev. Lett.
101
,
265501
(
2008
).
6.
J. R.
Lukes
,
D. Y.
Li
,
X. G.
Liang
, and
C. L.
Tien
,
J. Heat Transfer
122
,
536
(
2000
).
7.
D.
Donadio
and
G.
Galli
,
Phys. Rev. Lett.
102
,
195901
(
2009
).
8.
S. C.
Wang
,
X. G.
Liang
,
X. H.
Xu
, and
T.
Ohara
,
J. Appl. Phys.
105
,
014316
(
2009
).
9.
S.
Ju
,
X.
Liang
, and
S.
Wang
,
J. Phys. D: Appl. Phys.
43
,
085407
(
2010
).
10.
N.
Zuckerman
and
J. R.
Lukes
,
Phys. Rev. B
77
,
094302
(
2008
).
11.
D. P.
Sellan
,
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
J. Appl. Phys.
108
,
113524
(
2010
).
12.
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
J. Appl. Phys.
107
,
024317
(
2010
).
13.
C. J.
Gomes
,
M.
Madrid
,
J. V.
Goicochea
, and
C. H.
Amon
,
J. Heat Transfer
128
,
1114
(
2006
).
14.
S. G.
Volz
and
G.
Chen
,
Phys. Rev. B
61
,
2651
(
2000
).
15.
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
65
,
144306
(
2002
).
16.
S.
Kumar
and
R. N.
Singh
,
J. Am. Ceram. Soc.
78
,
728
(
1995
).
17.
M. A.
Angadi
,
T.
Watanabe
,
A.
Bodapati
,
X.
Xiao
,
O.
Auciello
,
J. A.
Carlisle
,
J. A.
Eastman
,
P.
Keblinski
,
P. K.
Schelling
, and
S. R.
Phillpot
,
J. Appl. Phys.
99
,
114301
(
2006
).
18.
Z.
Zhong
and
X.
Wang
,
J. Appl. Phys.
100
,
044310
(
2006
).
19.
J.
Crocombette
and
L.
Gelebart
,
J. Appl. Phys.
106
,
083520
(
2009
).
20.
A.
Bodapati
,
P.
Keblinski
,
P. K.
Schelling
, and
S. R.
Phillpot
,
Appl. Phys. Lett.
88
,
141908
(
2006
).
21.
A.
Bodapati
,
P. K.
Schelling
,
S. R.
Phillpot
, and
P.
Keblinski
,
Phys. Rev. B
74
,
245207
(
2006
).
22.
S.
Ju
and
X.
Liang
,
J. Appl. Phys.
108
,
104307
(
2010
).
23.
G.
Voronoi
,
J. Reine Angew. Math.
133
,
97
(
1908
).
24.
J.
Schiøtz
,
F. D.
Di Tolla
, and
K. W.
Jacobsen
,
Nature
391
,
561
(
1998
).
25.
F.
Fritzen
,
T.
Böhlke
, and
E.
Schnack
,
Comput. Mech.
43
,
701
(
2009
).
26.
27.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. B
31
,
5262
(
1985
).
28.
B. W.
Dodson
,
Phys. Rev. B
33
,
7361
(
1986
).
29.
I.
Ponomareva
,
D.
Srivastava
, and
M.
Menon
,
Nano Lett.
7
,
1155
(
2007
).
30.
D. A.
Broido
,
A.
Ward
, and
N.
Mingo
,
Phys. Rev. B
72
,
014308
(
2005
).
31.
L. J.
Porter
,
J. F.
Justo
, and
S.
Yip
,
J. Appl. Phys.
82
,
5378
(
1997
).
32.
N. S.
Martys
and
R. D.
Mountain
,
Phys. Rev. E
59
,
3733
(
1999
).
33.
F.
Muller-Plathe
and
D.
Reith
,
Comput. Theor. Polym. Sci.
9
,
203
(
1999
).
34.
F.
Muller-Plathe
,
J. Chem. Phys.
106
,
6082
(
1997
).
35.
H.
Zhao
and
N. R.
Aluru
,
Interact. Multiscale Mech.
1
,
303
(
2008
).
36.
J.
Che
,
T.
Çağin
,
W.
Deng
, and
W. A.
Goddard
,
J. Chem. Phys.
113
,
6888
(
2000
).
37.
J. E.
Turney
,
A. J. H.
McGaughey
, and
C. H.
Amon
,
Phys. Rev. B
79
,
224305
(
2009
).
38.
D. Y.
Li
,
Y. Y.
Wu
,
P.
Kim
,
L.
Shi
,
P. D.
Yang
, and
A.
Majumdar
,
Appl. Phys. Lett.
83
,
2934
(
2003
).
39.
D.
Wolf
,
V.
Yamakov
,
S. R.
Phillpot
,
A.
Mukherjee
, and
H.
Gleiter
,
Acta Mater.
53
,
1
(
2005
).
40.
C. J.
Glassbrenner
and
G. A.
Slack
,
Phys. Rev.
134
, A
1058
(
1964
).
41.
S.
Aubry
,
C. J.
Kimmer
,
A.
Skye
, and
P. K.
Schelling
,
Phys. Rev. B
78
,
064112
(
2008
).
42.
C.
Kimmer
,
S.
Aubry
,
A.
Skye
, and
P. K.
Schelling
,
Phys. Rev. B
75
,
144105
(
2007
).
43.
Y. F.
Zhu
,
J. S.
Lian
, and
Q.
Jiang
,
Appl. Phys. Lett.
92
,
113101
(
2008
).
44.
H. B. G.
Casimir
,
Physica (Amsterdam)
5
,
495
(
1938
).
45.
A.
Matthiessen
and
C.
Vogt
,
Ann. Phys. Chem.
122
,
19
(
1864
).
46.
J. V.
Goicochea
,
M.
Madrid
, and
C.
Amon
,
J. Heat Transfer
132
,
012401
(
2010
).
47.
Y. S.
Ju
and
K. E.
Goodson
,
Appl. Phys. Lett.
74
,
3005
(
1999
).
You do not currently have access to this content.