Correlations between microstructure and Q-factor of tunable solidly mounted Ba0.25Sr0.75TiO3 (BSTO) thin film bulk acoustic wave resonators are studied using analysis of test structures prepared at different growth temperatures of the BSTO films varying in the range 450-650 °C. The observed changes in the Q-factor with growth temperature are correlated with related changes in microstructure, including the grain size, texture misalignment, interfacial amorphous layer, surface roughness, and deterioration of the Bragg reflector layers. The correlations are established through analysis of corresponding extrinsic acoustic loss mechanisms, including Rayleigh scattering at localized defects, acoustic attenuation by amorphous layer, generation of the shear waves leaking into the substrate, waves scattering by surface roughness, and resonance broadening by local thickness variations. It is shown that the waves scattering by surface roughness at the BSTO film interfaces is the main loss mechanism limiting the Q-factor of the BSTO thin film bulk acoustic wave resonators.

1.
J.
Berge
,
M.
Norling
,
A.
Vorobiev
, and
S.
Gevorgian
,
J. Appl. Phys.
103
,
064508
(
2008
).
2.
A.
Noeth
,
T.
Yamada
,
P.
Muralt
,
A. K.
Tagantsev
, and
N.
Setter
,
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
57
,
379
(
2010
).
3.
G. N.
Saddik
,
D. S.
Boesch
,
S.
Stemmer
, and
R.
York
,
IEEE MTT-S Int. Microwave Symp. Dig.
1
,
1263
(
2008
).
4.
X.
Zhu
,
J. D.
Phillips
, and
A.
Mortazawi
,
IEEE MTT-S Int. Microwave Symp. Dig.
1
,
671
(
2007
).
5.
K.-Y.
Hashimoto
,
RF Bulk Acoustic Wave Filters for Communications
(
Artech House
,
Norwood, MA
,
2009
).
6.
R.
Nava
,
R.
Callarotti
,
H.
Ceva
, and
A.
Martinet
,
Phys. Rev.
188
,
1456
(
1969
).
7.
J. F.
Rosenbaum
,
Bulk Acoustic Wave Theory and Devices
(
Artech House
,
Norwood, MA
,
1988
).
8.
A.
Volatier
,
E.
Defay
,
M.
Aid
,
A. N
′hari
,
P.
Ancey
, and
B.
Dubus
,
Appl. Phys. Lett.
92
,
032906
(
2008
).
9.
R. E.
Green
,
Ultrasonic Investigation of Mechanical Properties
(
Academic
,
New York
,
1973
).
10.
J.
Berge
,
A.
Vorobiev
,
W.
Steichen
, and
S.
Gevorgian
,
IEEE Microw. Wirel. Compon. Lett.
17
,
655
(
2007
).
11.
R.
Thalhammer
,
J.
Kaitila
,
R.
Aigner
, and
S.
Marksteiner
,
Proc.-IEEE Ultrason. Symp.
1
,
282
(
2004
).
12.
J.
Kaitila
,
IEEE Ultrason. Symp. Dig.
1
,
120
(
2007
).
13.
S.
Marksteiner
,
J.
Kaitila
,
G. G.
Fattinger
,
R.
Aigner
,
Proc.-IEEE Ultrason. Symp.
1
,
329
(
2005
).
14.
F.
Martin
,
M.-E.
Jan
,
B.
Belgacem
,
M.-A.
Dubois
, and
P.
Muralt
,
Thin Solid Films
514
,
341
(
2006
).
15.
J.
Bjurström
,
G.
Wingqvist
, and
I.
Katardjiev
,
IEEE Ultrason. Symp. Dig.
1
,
321
(
2005
).
16.
A.
Vorobiev
and
S.
Gevorgian
,
Appl. Phys. Lett.
96
,
212904
(
2010
).
17.
M.
Norling
,
J.
Berge
, and
S.
Gevorgian
,
IEEE MTT-S Int. Microwave Symp. Dig.
1
,
101
(
2009
).
18.
A.
Vorobiev
and
S.
Gevorgian
, paper presented at MEMSWAVE 2010, Otranto, Italy, 28–30 June 2010.
19.
A. K.
Tagantsev
,
V. O.
Sherman
,
K. F.
Astafiev
,
J.
Venkatesh
, and
N.
Setter
,
J. Electroceramics
11
,
5
(
2003
).
20.
K.
Bethe
,
Philips Res. Rep. (Suppl 2)
2
,
73
(
1970
).
21.
Z.
Ma
,
A. J.
Becker
,
P.
Polakos
,
H.
Huggins
,
J.
Pastalan
,
H.
Wu
,
Y. H.
Wong
, and
P.
Mankiewich
,
IEEE Trans. on Electron Devices
45
,
1811
(
1998
).
22.
D.-H.
Kim
,
M.
Yim
,
D.
Chai
,
J.-S.
Park
, and
G.
Yoon
,
Jpn. J. Appl. Phys.
43
,
1545
(
2004
).
23.
K.
Kuribayashi
and
S.
Kitamura
,
Thin Solid Films
400
,
160
(
2001
).
24.
P. G.
Klemens
,
Proc. Phys. Soc., London, Sect. A
68
,
1113
(
1955
).
25.
M.
Aspelmeyer
,
U.
Klemradt
,
W.
Hartner
,
H.
Bachhofer
, and
G.
Schindler
,
J. Phys. D: Appl. Phys.
34
,
A173
(
2001
).
26.
O. G.
Vendik
,
E. K.
Hollmann
,
A. B.
Kozyrev
, and
A. M.
Prudan
,
J. Supercond.
12
,
325
(
1999
).
27.
O. G.
Vendik
and
S. P.
Zubko
,
J. Appl. Phys.
88
,
5343
(
2000
).
28.
O. G.
Vendik
and
L. T.
Ter-Martirosyan
,
J. Appl. Phys.
87
,
1435
(
2000
).
29.
S.
Saha
and
S. B.
Krupanidhi
,
Appl. Phys. Lett.
79
,
111
(
2001
).
30.
M. S.
Tsai
and
T. Y.
Tseng
,
Mater. Chem. Phys.
57
,
47
(
1998
).
31.
N. M.
Alford
,
P. K.
Petrov
,
A. G.
Gagarin
,
A. B.
Kozyrev
,
A. I.
Sokolov
,
O. I.
Soldatenkov
, and
V. A.
Volpyas
,
Appl. Phys. Lett.
87
,
222904
(
2005
).
32.
Yu. A.
Boikov
,
B. M.
Goltsman
,
V. K.
Yarmarkin
, and
V. V.
Lemanov
,
Appl. Phys. Lett.
78
,
3866
(
2001
).
33.
D.
Muller-Sajak
,
A.
Cosceev
,
C.
Brand
,
K. R.
Hofmann
, and
H.
Pfnur
,
Phys. Status Solidi C
7
,
316
(
2010
).
34.
W. G.
Lee
,
S. I.
Woo
,
J. C.
Kim
,
S. H.
Choi
, and
K. H.
Oh
,
Thin Solid Films
237
,
105
(
1994
).
35.
W.
Schirmacher
,
G.
Diezemann
, and
C.
Ganter
,
Phys. Rev. Lett.
81
,
136
(
1998
).
36.
T. S.
Grigera
,
V.
Martin-Mayor
,
G.
Parisi
, and
P.
Verrocchio
,
Phys. Rev. Lett.
87
,
085502
(
2001
).
37.
G. F.
Iriarte
,
F.
Engelmark
, and
I. V.
Katardjiev
,
J. Mater. Res.
17
,
1469
(
2002
).
38.
S. N.
Ivanov
and
Ye. N.
Khazanov
,
Radio Eng. Electron.
26
,
133
(
1981
).
39.
R. O.
Bell
and
G.
Rupprecht
,
Phys. Rev.
129
,
90
(
1963
).
You do not currently have access to this content.