Quaternary III-V InAsSbP quantum dots (QDs) have been grown in the form of cooperative InAsSb/InAsP structures using a modified version of the liquid phase epitaxy. High resolution scanning electron microscopy, atomic force microscopy, and Fourier-transform infrared spectrometry were used to investigate these so-called nano-camomiles, mainly consisting of a central InAsSb QD surrounded by six InAsP-QDs, that shall be referred to as leaves in the following. The observed QDs average density ranges from 0.8 to 2 ×109cm-2, with heights and widths dimensions from 2 to 20 nm and 5 to 45 nm, respectively. The average density of the leaves is equal to (6-10) ×109cm-2 with dimensions of approx. 5 to 40 nm in width and depth. To achieve a first basic understanding of the electronic properties, we have modeled these novel nanostructures using second-order continuum elasticity theory and an eight-band k·p model to calculate the electronic structure. Our calculations found a clear localization of hole states in the central InAsSb dot. The localization of electron states, however, was found to be weak and might thus be easily influenced by external electric fields or strain.

1.
A.
Rogalski
,
Acta Physica Polonica A
116
,
389
(
2009
).
2.
P.
Bhattacharya
,
X. H.
Su
,
S.
Chakrabarti
,
G.
Ariyawansa
, and
A. G. U.
Perera
,
J. Appl. Phys.
86
,
191106
(
2005
).
3.
A.
Krier
,
Z.
Labadi
, and
A.
Hammiche
,
J. Phys. D: Applied Physics
32
,
2587
(
1999
).
4.
K. M.
Gambaryan
,
Nanoscale Research Letters
5
,
587
(
2010
).
5.
V. M.
Aroutiounian
,
K. M.
Gambaryan
, and
P. G.
Soukiassian
,
Surf. Sci.
604
,
1127
(
2010
).
6.
V. M.
Aroutiounian
,
S. G.
Petrosian
,
A.
Khachatryan
, and
K.
Touryan
,
J. Appl. Phys.
89
,
2268
(
2001
).
7.
K. M.
Gambaryan
,
V. M.
Aroutiounian
,
T.
Boeck
, and
M.
Schulze
,
Phys. Status Solidi (c)
6
,
1456
(
2009
).
8.
K. M.
Gambaryan
,
V. M.
Aroutiounian
,
T.
Boeck
,
M.
Schulze
, and
P. G.
Soukiassian
,
J. Phys. D: Applied Physics (FTC)
41
,
162004
(
2008
).
9.
K. D.
Moiseev
,
Y. A.
Parkhomenko
,
A. V.
Ankudinov
,
E. V.
Gushchina
,
M. P.
Mikhailova
,
A. N.
Titkov
, and
Y. P.
Yakolev
,
Tech. Phys. Lett.
33
,
295
(
2007
).
10.
R. D.
Vengrenovich
,
Y. V.
Gudyma
, and
S. V.
Yarema
,
Semiconductors
35
,
1378
(
2001
).
11.
K.
Onabe
,
NEC Res. Develop.
72
,
1
(
1984
).
12.
M.
Povolotskyi
,
M.
auf der Maur
, and
A. D.
Carlo
,
Phys. Status Solidi (c)
2
,
3891
(
2005
).
13.
O.
Marquardt
,
T.
Hickel
, and
J.
Neugebauer
,
J. Appl. Phys.
106
,
083707
(
2009
).
14.
O.
Marquardt
,
S.
Boeck
,
C.
Freysoldt
,
T.
Hickel
, and
J.
Neugebauer
,
Computer Phys. Commun.
181
,
765
(
2010
).
15.
I.
Vurgaftman
,
J. R.
Meyer
, and
L. R. R.
Mohan
,
J. Appl. Phys.
89
,
5815
(
2001
).
16.
T. B.
Bahder
,
Phys. Rev. B
41
,
11992
(
1990
).
17.
O.
Marquardt
,
D.
Mourad
,
S.
Schulz
,
T.
Hickel
,
G.
Czycholl
, and
J.
Neugebauer
,
Phys. Rev. B
78
,
235302
(
2008
).
18.
G.
Bester
and
A.
Zunger
,
Phys. Rev. B
71
,
045318
(
2005
).
You do not currently have access to this content.